Citation: | DENG Jun, LIU Le, WANG Caiping, REN Lifeng, BAI Zujin. Research on thermal effect and thermo kinetic parameters during oxidation combustion of lean coal[J]. Safety in Coal Mines, 2021, 52(12): 35-41. |
[1] |
CHAO Junnan, YANG Hairui, WU Yuxin, et al. The investigation of the coal ignition temperature and ignition characteristics in an oxygen-enriched FBR[J]. Fuel, 2016, 183(1): 351-358.
|
[2] |
LIU Bing, ZHANG Zhezi, ZHANG Hai, et al. An experimental investigation on the effect of convection on the ignition behavior of single coal particles under various O2 concentrations[J]. Fuel, 2014, 116: 77-83.
|
[3] |
周亮,戴广龙,秦汝祥.高瓦斯易自燃煤层采空区遗煤自燃影响因素研究[J].中国安全科学学报,2018,28(2):122-127.
ZHOU Liang, DAI Guanglong, QIN Ruxiang. Research on factors influencing spontaneous combustion of coal in goaf in gassy coal seam having propensity to spontaneous combustion[J]. China Safety Science Journal, 2018, 28(2): 122-127.
|
[4] |
刘晨,谢军,辛林.煤自燃预测预报理论及技术研究综述[J].矿业安全与环保,2019,46(3):92-95.
LIU Chen, XIE Jun, XIN Lin. Review of theory and technology research on prediction of coal spontaneous combustion[J]. Mining Safety and Environmental Protection, 2019, 46(3): 92-95.
|
[5] |
刘天奇.不同煤质煤尘云与煤尘层最低着火温度实验研究[J].燃烧科学与技术,2019,25(5):445-450.
LIU Tianqi. Experimental study on minimum ignition temperature of coal dust cloud and coal dust layer of different metamorphism[J]. Journal of Combustion Science and Technology, 2019, 25(5): 445-450.
|
[6] |
GOMEZ Arturo, MAHINPEY Nader. Kinetic study of coal steam and CO2 gasification: A new method to reduce interparticle diffusion[J]. Fuel, 2015, 148(15): 160-167.
|
[7] |
何启林,王德明.TG-DTA-FTIR技术对煤氧化过程的规律性研究[J].煤炭学报,2005,30(1):53-57.
HE Qilin, WANG Deming. Comprehensive study on the rule of spontaneous combustion coal in oxidation process by TG-DTA-FTIR technology[J]. Journal of China Coal Society, 2005, 30(1): 53-57.
|
[8] |
杨漪,邓军,张嬿妮,等.煤氧化特性的STA-FTIR实验研究[J].煤炭学报,2018,43(4):1031.
YANG Yi, DENG Jun, ZHANG Yanni, et al. Oxidation characteristics of coal by STA-FTIR experiment[J]. Journal of China Coal Society, 2018, 43(4): 1031.
|
[9] |
文虎,王文,陶维国,等.超长综采工作面撤架期间煤自燃预测及防控技术研究[J].煤炭科学技术,2020, 48(1):167-173.
WEN Hu, WANG Wen, TAO Weiguo, et al. Study on coal spontaneous combustion prediction and control technology during withdrawal period of super long fully mechanized mining face[J]. Coal Science and Technology, 2020, 48(1): 167-173.
|
[10] |
Jayaraman K, Goekalp I. Thermal characterization, gasification and kinetic studies of different sized Indian coal and char particles[J]. International Journal of Advances in Engineering Sciences & Applied Mathematics, 2014, 6(1/2): 31-40.
|
[11] |
皇甫文豪,尤飞,王振华,等.烟煤升温氧化的影响因素及其低温热解动力学[J].煤矿安全,2019,50(3):17-21.
HUANGPU Wenhao, YOU Fei, WANG Zhenhua, et al. Research on influencing factors and low-temperature pyrolysis kinetics of bituminous coal oxidation and spontaneous combustion[J]. Safety in Coal Mines, 2019, 50(3): 17-21.
|
[12] |
郝宇.不同煤阶煤自燃特性的实验研究[J].煤矿安全,2020,51(6):55-59.
HAO Yu. Experimental study on spontaneous combustion characteristics of different rank coals[J]. Safety in Coal Mines, 2020, 51(6): 55-59.
|
[13] |
邵玥,尤飞,尤明伟,等.升温速率及氧浓度对长焰煤煤氧复合过程特性的影响[J].安全与环境学报,2016,16(5):177-181.
SHAO Yue, YOU Fei, YOU Mingwei, et al. Effect of the oxygen content and heating rate on the oxidation process of the long-flame burning coal[J]. Journal of Safety and Environment, 2016, 16(5): 177-181.
|
[14] |
赵维国,李经文,张辛亥,等.东荣矿区煤样氧化反应动力学热分析[J].西安科技大学学报,2020,40(2):238-243.
ZHAO Weiguo, LI Jingwen, ZHANG Xinhai, et al. Kinetics and thermal analysis of oxidation reaction of coal samples in Dongrong mining area[J]. Journal of Xi’an University of Science and Technology, 2020, 40(2): 238-243.
|
[15] |
张辛亥,白亚娥,李亚清,等.煤升温氧化动力学阶段性规律[J].西安科技大学学报,2017,37(4):474.
ZHANG Xinhai, BAI Yae, LI Qingwei, et al. Kinetics and segmentation law of coal oxidation at elevated temperature[J]. Journal of Xi’an University of Science and Technology, 2017, 37(4): 474.
|
[16] |
张国枢,谢应明,顾建明.煤炭自燃微观结构变化的红外光谱分析[J].煤炭学报,2003,28(5):473-476.
ZHANG Guoshu, XIE Yingming, GU Jianming. Infrared spectral analysis of microstructure change during the coal spontaneous oxidation[J]. Journal of China Coal Society, 2003, 28(5): 473-476.
|
[17] |
肖旸,马砺,王振平,等.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,35(5):73-76.
XIAO Yang, MA Li, WANG Zhenping, et al. Research on characteristic temperature in coal spontaneous combustion with thermal gravity analysis method[J]. Coal Science and Technology, 2007, 35(5): 73-76.
|
[18] |
邓军,李青蔚,肖旸,等.原煤和氧化煤的低温氧化特性[J].西安科技大学学报,2018,38(1):1-7.
DENG Jun, LI Qingwei, XIAO Yang, et al. Characteristics of low-temperature oxidation of raw and oxidized coals[J]. Journal of Xi’an University of Science and Technology, 2018, 38(1): 1-7.
|
[19] |
王文达,尤飞,邵玥,等.粒度对煤自燃过程中特征温度的影响[J].消防科学与技术,2016,35(11):1511.
WANG Wenda, YOU Fei, SHAO Yue, et al. Effect of particle size on characteristic temperature of coal spontaneous combustion[J]. Fire Science and Technology, 2016, 35(11): 1511.
|
[20] |
张九零,朱定,朱壮.煤变质程度对煤自燃特性的影响[J].矿业安全与环保,2020,47(3):42-44.
ZHANG Jiuling, ZHU Ding, ZHU Zhuang. The influence of metamorphism degree on spontaneous combustion characteristics of coal[J]. Mining Safety and Environmental Protection, 2020, 47(3): 42-44.
|
[21] |
郭延红,程帆.混煤热解动力学模型适应性分析[J].燃烧科学与技术,2019,25(6):509.
GUO Yanhong, CHENG Fan. Adaptability analysis of kinetic model of blended coal pyrolysis[J]. Journal of Combustion Science and Technology, 2019, 25(6): 509.
|
[22] |
白佳杰,梁丽彤,张忠林,等.基于CPD模型的低阶煤催化解聚过程模拟分析[J].化工学报,2019,70(S2):265-274.
BAI Jiajie, LIANG Litong, ZHANG Zhonglin, et al. Simulation and analysis of catalytic depolymerization of low-rank coal by chemical percolation devolatilization model[J]. Journal of Chemical Industry and Engineering, 2019, 70(S2): 265-274.
|
[23] |
王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社,2007.
|
[1] | HE Chengmao, WANG Yang, ZHANG Qingfeng. Research on change law of fire smoke characteristics during dynamic sealing process of mine tunnels[J]. Safety in Coal Mines, 2025, 56(1): 100-106. DOI: 10.13347/j.cnki.mkaq.20240006 |
[2] | YANG Xue, YANG Juan, ZHANG Hanyuan. Study on emotional evolution mechanism of miners based on system dynamics[J]. Safety in Coal Mines, 2021, 52(1): 252-256. |
[3] | ZHANG Zhe, QIN Xinglin. Adsorption Dynamics Characteristic of Tectonic Coal in Yuwu Coal Mine[J]. Safety in Coal Mines, 2020, 51(8): 28-31,36. |
[4] | SHEN Yunge, WANG Deming. Numerical Simulation of Smoke Disaster Caused by Mine Roadway Fire Based on FDS[J]. Safety in Coal Mines, 2020, 51(2): 183-187. |
[5] | SUO Zaibin, WU Shiyue, NIU Yu, CHEN Jin. Numerical Simulation of the Influence of Slope on Upward Ventilation Fire[J]. Safety in Coal Mines, 2019, 50(1): 192-195,199. |
[6] | ZHAO Yunlong, WANG Fei, LIU Hongwei, LI Pu. FDS Simulation and Analysis of Mine Electromechanical Chamber Fire[J]. Safety in Coal Mines, 2018, 49(12): 181-184. |
[7] | YAN Jun′ai, GUO Zhen. Research on Influencing Factors of Coal Mine Emergency Capability Based on System Dynamics[J]. Safety in Coal Mines, 2015, 46(4): 228-230. |
[8] | LIU Dong. Study on System Dynamics of Coal Mine Safety Impact Factors[J]. Safety in Coal Mines, 2014, 45(2): 212-214,217. |
[9] | ZHANG Xin-hai, XING Zhen, MA Li, LI Hao. FDS Numerical Simulation for Partial Inverted Ventilation of Exogenous Mine Fire[J]. Safety in Coal Mines, 2013, 44(11): 185-186,190. |
[10] | QU Zhi-ming, WANG Yu-de, ZHOU Xin-quan. Dynamic Laws and Numerical Simulation Study of Gas Explosion Shock Wave[J]. Safety in Coal Mines, 2013, 44(4): 1-5. |