• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Zhaoming. Principle and application of coordinated action of rock bolt support plate composite component[J]. Safety in Coal Mines, 2021, 52(10): 79-86.
Citation: WANG Zhaoming. Principle and application of coordinated action of rock bolt support plate composite component[J]. Safety in Coal Mines, 2021, 52(10): 79-86.

Principle and application of coordinated action of rock bolt support plate composite component

More Information
  • Published Date: October 19, 2021
  • Aims at the problem that the rock bolt support plate is seriously damaged due to the uneven surface of surrounding rock in the fast tunneling of shallow buried roadway with large section and causes the support failure, the coordinated action mechanism of the bolt support plate composite component was studied by combining laboratory test, numerical simulation and theoretical analysis, and the mechanical model of the bolt support plate composite component was constructed to analyze the force evolution characteristics of the bolt support plate and the self-aligning gasket under partial load and the supporting effect of roadway under different bolt support plate combinations. The industrial test results of large section open-cut roadway of Xiaobaodang working face 112207 show that when the coordination of bolt support plate composite components is good, the stress concentration degree of bolt tail can be effectively reduced, the bolt preload can be improved, the bolt tail is not prone to damage and deformation, and it is helpful to apply the bolt preload, and the support effect is better. The maximum concentrated stress of the supporting plate under the condition of locking each other is greater than that under the condition of good coordination of the supporting plate.
  • [1]
    马长乐,袁龙飞,张羽,等.大断面煤巷快速掘进施工工艺[J].煤矿安全,2013,44(5):98-100.

    MA Changle, YUAN Longfei, ZHANG Yu, et al. Rapid excavation construction technology for large section seam roadway[J]. Safety in Coal Mines, 2013, 44(5): 98-100
    [2]
    张常青.综合机械化掘进在煤矿生产中的作用与意义[J].中国高新技术企业,2012(14):106-107.
    [3]
    赵学社.煤矿高效掘进技术现状与发展趋势[J].煤炭科学技术,2007,35(4):1-10.

    ZHAO Xueshe. Present status and development tendency of high efficient roadway driving technology in coal mine[J]. Coal Science and Technology, 2007, 35(4): 1-10.
    [4]
    康红普.吴建星.锚杆托板的力学性能与支护效果分析[J].煤炭学报,2012,37(1):8.

    KANG Hongpu, WU Jianxing. Analysis on mechanical performance and supporting function of rock bolt plates[J]. Journal of China Coal Society, 2012, 37(1): 8.
    [5]
    康红普,崔千里,胡滨,等.树脂锚杆锚固性能及影响因素分析[J].煤炭学报,2014,39(1):1-10.

    KANG Hongpu, CUI Qianli, HU Bin, et al. Analysis on anchorage performances and affecting factors of resin bolts[J]. Journal of China Coal Society, 2014, 39(1): 1-10.
    [6]
    康红普,吴拥政,李建波.锚杆支护组合构件的力学性能与支护效果分析[J].煤炭学报,2010,35(7):1057.

    KANG Hongpu, WU Yongzheng, LI Jianbo. Analysis on mechanical performance and supporting function of combination components for rock bolting[J]. Journal of China Coal Society, 2010, 35(7): 1057.
    [7]
    Kilic A, Yasar E, Atis C D. Effect of bar shape on the pull-out capacity of fully-grouted rockbolts[J]. Tunnelling and Underground Space Technology, 2003, 18: 1-6.
    [8]
    Kilic A, Yasar E, Celik A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology, 2002, 17: 355-362.
    [9]
    Campoli A, Mills P, Todd P, et al. Resin annulus size effects on rebar bolt pull strength and resin loss to fractured rock[C]//Proceedings of 18th International Conference on Ground Control in Mining. Morgantown, WV, West Virginia University, 1999: 222-231.
    [10]
    原贵阳,孙志勇,李建忠.锚杆支护组合构件对钢筋网加固作用试验研究[J].煤炭学报,2020,45(2):556-567.

    YUAN Guiyang, SUN Zhiyong, LI Jianzhong. Experimental study on reinforcement effect of bolt support composite members on reinforced mesh[J]. Journal of China Coal Society, 2020, 45(2): 556-567.
    [11]
    于远祥,王赋宇,任建喜,等.考虑托板作用的深埋岩体分区破裂时空效应[J].煤炭学报,2020,45(2):598-612.

    YU Yuanxiang, WANG Fuyu, REN Jianxi, et al. Space-time effect of zonal disintegration in deep buried rock mass considering the backing plate effect[J]. Journal of China Coal Society, 2020, 45(2): 598-612.
    [12]
    于远祥,陈宝平,王赋宇,等.基于锚杆受力分析的深埋洞室围岩分区破裂演化规律研究[J].岩石力学与工程学报,2018,37(7):1629-1640.

    YU Yuanxiang, CHEN Baoping, WANG Fuyu, et al. Study on the rupture evolution law of surrounding rock of deep buried cavern based on the analysis of bolt stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1629-1640.
    [13]
    王卫军,董恩远,赵志伟,等.预裂锚固体力学特性及锚固机理[J].煤炭学报,2020,45(1):82 -89.

    WANG Weijun, DONG Enyuan, ZHAO Zhiwei, et al. Experimental study on mechanical properties of anchorage body and on anchorage mechanism[J]. Journal of China Coal Society, 2020, 45(1): 82-89.
    [14]
    郝亮钧,宫伟力,何满潮,等.双根恒阻大变形锚杆在冲击载荷作用下的理论模型[J].煤炭学报,2018,43(S2):385-392.

    HAO Liangjun, GONG Weili, HE Manchao, et al. Theoretical model of the double constant-resistance-large-deformation bolts under impact load[J]. Journal of China Coal Society, 2018, 43(S2): 385-392.
    [15]
    吴拥政,康红普.强力锚杆杆体尾部破断机理研究[J].煤炭学报,2013,38(9):1537-1541.

    WU Yongzheng, KANG Hongpu. Failure mechanism study on tail of high strength bolt[J]. Journal of China Coal Society, 2013, 38(9): 1537-1541.
    [16]
    程蓬,康红普,鞠文君.锚杆杆尾螺纹力学性能的实验研究[J].煤炭学报,2013,38(11):1929-1933.

    CHENG Peng, KANG Hongpu, JU Wenjun. Experimental study on mechanical properties of thread end of rock bolts[J]. Journal of China Coal Society, 2013, 38(11): 1929-1933.
    [17]
    林健,孙志勇. 锚杆支护金属网力学性能与支护效果实验室研究[J].煤炭学报,2013,38(9):1542.

    LIN Jian, SUN Zhiyong. Laboratory studies on mechanical performance and supporting function of bolt metal meshes[J]. Journal of China Coal Society, 2013, 38(9): 1542-1548.
    [18]
    王明恕.全长锚固锚杆机理的探讨[J].煤炭学报,1983(1):40-47.

    WANG Mingshu. Mechanism of full-column rock bolt[J]. Journal of China Coal Society, 1983(1): 40-47.
    [19]
    王成,肖东平,文竞舟,等.从锚杆轴力反算围岩塑性区范围研究[J].重庆交通大学学报(自然科学版),2009,28(S1):369-371.

    WANG Cheng, XIAO Dongping, WEN Jingzhou, et al. Research on back calculation of plastic zone in surrounding rock from axial force of rock bolts[J]. Journal of Chongqing Jiaotong University(Natural Science), 2009, 28(S1): 369-371.
    [20]
    杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(S2):279-282.

    YANG Shuangsuo, ZHANG Baisheng. The mechanical essence of the effect of bolt on rock and soil[J]. Rock and Soil Mechanics, 2003, 24(S2): 279-282.
    [21]
    朱训国,陈卓立,赵德深.深埋分区破裂隧道锚杆支护力学机制[J].辽宁工程技术大学学报(自然科学版),2018,37(4):703-709.

    ZHU Xunguo, CHEN Zhuoli, ZHAO Deshen. Mechanical mechanism of bolt support for deep buried zoned tunnels[J]. Journal of Liaoning Technical University(Natural Science Edition), 2018, 37(4): 703-709.
    [22]
    覃正刚.高强预应力锚杆的锚固机理及时效性分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2007.
    [23]
    孔恒,王梦恕,马念杰,等.锚杆尾部的破断机理研究[J].岩石力学与工程学报,2003,22(3):383-386.

    KONG Heng, WANG Mengshu, MA Nianjie, et al. Study on breaking mechanism of rockbolt-end[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 383-386.
    [24]
    李世平.权台煤矿煤巷锚杆试验观测报告—兼论煤巷锚杆特点与参数选择新观点[J].中国矿业学院学报,1979(4):19-57.

    LI Shiping. Analysis report of bolting test of coal roadway in Quantai Coal Mine-also on the new viewpoints of bolt characteristics and parameter selection of coal roadway[J]. Journal of China Mining Institute, 1979(4): 19-57.
    [25]
    朱文心,靖洪文,张力,等.锚杆作用下块状岩体力学特性试验研究[J].采矿与安全工程学报,2018,35(2):261-266.

    ZHU Wenxin, JING Hongwen, ZHANG Li, et al. Experimental study on the mechanical properties of lumpy rock mass under bolt reinforcement[J]. Journal of Mining & Safety Engineering,2018, 35(2): 261-266.
    [26]
    侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.

    HOU Chaojiong, GOU Panfeng. Study of strengthening mechanism in surrounding rock strength for roadway bolt support[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 342-345.
  • Related Articles

    [1]JIA Lifeng, DONG Qing, LIANG Bing, SUN Weiji. Study on superposition relation of coal deformation under adsorption[J]. Safety in Coal Mines, 2022, 53(1): 181-187.
    [2]Creep-large deformation experiment and constitutive model of soft rock in high and steep slope of open-pit[J]. Safety in Coal Mines, 2022, 53(1): 95-99.
    [3]ZHANG Jiafan, ZHOU Feiwen, ZHOU Hongwen. Dynamic characteristics and constitutive model of coal rock under impact loading[J]. Safety in Coal Mines, 2021, 52(3): 84-89.
    [4]YANG Yuliang, JIANG Jinhu, LIU Chuang, YANG Mu, LIU Shikai, WANG Liang, ZHU Xiaofeng, QIAO Hongjun. Creep Properties and Constitutive Relation of Anthracite Under Temperature-Stress Coupling[J]. Safety in Coal Mines, 2020, 51(5): 61-65.
    [5]WEI Meng, SU Tao, ZHANG Ningxin. Study on Constitutive Equation of Pressure Relief Blasting of High Geo-stress Tunnel[J]. Safety in Coal Mines, 2018, 49(10): 207-212.
    [6]QIN Lin. Research on Safety Evaluation Model of Coal Cutter Based on Coupling Relation[J]. Safety in Coal Mines, 2017, 48(3): 209-211,215.
    [7]FAN Xiangyu, LIANG Yongchang, ZHANG Qiangui, YANG Bozhong, TONG Meng, XIE Wei. Improvement and Analysis of Nishihara Model Based on Coal and Rock Creep Mechanics Experiment[J]. Safety in Coal Mines, 2016, 47(10): 212-215.
    [8]WANG Tongxu, MA Qiufeng, QU Kongdian, ZHANG Yang. Development and Application of Creep Fracture Damage Constitutive Model for Fractured Rock Mass[J]. Safety in Coal Mines, 2016, 47(10): 40-43.
    [9]ZHANG Wenqing, MU Chaomin. Research on Impact Mechanical Behavior and Constitutive Relation of Outburst Coal[J]. Safety in Coal Mines, 2016, 47(7): 1-4.
    [10]WANG Chao, YANG Xiaobin, GUO Weiqi, CHEN Feiya, LIANG Xiao. Uniaxial Loading Statistical Damage Constitutive Model for Coal and Rock[J]. Safety in Coal Mines, 2015, 46(11): 10-13.

Catalog

    Article views (76) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return