• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
REN Jianxi, CHEN Shoujia, YUE Dong, HUO Xiaoquan, YUAN Zengyun, FAN Zhihai, KOU Yimin, HOU Zhengli. Study on triaxial compression failure mechanism of fractured coal and rock in 4-2 coal seam of Yuhua Mine[J]. Safety in Coal Mines, 2021, 52(9): 54-63.
Citation: REN Jianxi, CHEN Shoujia, YUE Dong, HUO Xiaoquan, YUAN Zengyun, FAN Zhihai, KOU Yimin, HOU Zhengli. Study on triaxial compression failure mechanism of fractured coal and rock in 4-2 coal seam of Yuhua Mine[J]. Safety in Coal Mines, 2021, 52(9): 54-63.

Study on triaxial compression failure mechanism of fractured coal and rock in 4-2 coal seam of Yuhua Mine

More Information
  • Published Date: September 19, 2021
  • In this paper, the TAW-1000 triaxial test system is used to carry out the triaxial compression test of the complete and single fractured coals under different confining pressures, and the acoustic emission monitoring system is used. This paper analyzes the failure mechanism of fractured coal and rock based on the fracture diagram of fractured coal and the relationship between stress and strain. The results show that: the stress of single fracture coal is more complex than that of intact coal. The stress concentration at the tip of the fracture leads to the formation of micro cracks and the development of connectivity, which makes the coal enter the plastic stage earlier and leads to the significant deterioration of the strength and elastic modulus of coal. The results show that the lateral deformation of fractured coal and rock is more significant than that of intact coal and rock under higher confining pressure; with the increase of confining pressure, the fracture mode of 45° fractured coal and rock presents an excessive failure mode from direct shear failure to oblique shear failure; the stress-strain curve of 60° fractured coal and rock presents a plateform softening, and the change of elastic modulus is not obvious with the increase of confining pressure; under the same confining pressure, with the increase of fracture angle, the mechanical parameters of fractured coal and rock deteriorate significantly with the increase of fracture degree. The fracture dip angle is positively correlated with the ringing number.
  • [1]
    邵维忠.“工程地质勘察中岩石裂隙的研究方法”一書的摘要介绍[J].水力发电,1957(11):44-50.
    [2]
    丰文清,邵小曼.裂隙对岩石力学性质影响的研究[C]//四川省岩石力学与工程学会首届学术会议论文集.四川省岩石力学与工程学会,1994:113-120.
    [3]
    肖桃李,李新平,郭运华.三轴压缩条件下单裂隙岩石的破坏特性研究[J].岩土力学,2012,33(11):3251.

    XIAO Taoli, LI Xinping, GUO Yunhua. Experimental study of failure characteristic of single jointed rock mass under triaxial compression tests[J]. Rock and Soil Mechanics, 2012, 33(11): 3251.
    [4]
    黄彦华,杨圣奇,鞠杨,等.断续裂隙类岩石材料三轴压缩力学特性试验研究[J].岩土工程学报,2016,38(7):1212-1220.

    HUANG Yanhua, YANG Shengqi, JU Yang, et al. Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J]. Rock and Soil Mechanics, 2016, 38(7): 1212-1220.
    [5]
    杨圣奇,黄彦华,刘相如.断续双裂隙岩石抗拉强度与裂纹扩展颗粒流分析[J].中国矿业大学学报,2014, 43(2):220-226.

    YANG Shengqi, HUANG Yanhua, LIU Xiangru. Particle flow analysis on tensile strength and crack coalescence behavior of brittle rock containing two pre-existing fissures[J]. Journal of China University of Mining & Technology, 2014, 43(2): 220-226.
    [6]
    余明坤,许国伟,唐国栋,等.预制裂隙类岩石材料的分步卸载试验研究[J].地下空间与工程学报,2020, 16(6):1672-1681.

    YU Mingkun, XU Guowei, TANG Guodong, et al. Experimental study on stepped unloading of rock-like materials with pre-existing fissure[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1672-1681.
    [7]
    吴钰,任旭华,张继勋,等.含裂隙岩石单轴压缩数值试验研究[J].三峡大学学报(自然科学版),2021(2):35-41.

    WU Yu, REN Xuhua, ZHANG Jixun, et al. Numerical and experimental study on rock containing pre-existing cracks under uniaxial compression[J]. Journal of China Three Gorges University(Natural Sciences), 2021(2): 35-41.
    [8]
    纪洪广,卢翔.常规三轴压缩下花岗岩声发射特征及其主破裂前兆信息研究[J].岩石力学与工程学报,2015,34(4):694.

    JI Hongguang, LU Xiang. Characteristics of acoustic emission and rock fracture precursors of granite under conventional triaxial compression chinese[J]. Journal of Rock Mechanics and Engineering, 2015, 34(4): 694.
    [9]
    苏承东,高保彬,南华,等.不同应力路径下煤样变形破坏过程声发射特征的试验研究[J].岩石力学与工程学报,2009,28(4):757-766.

    SU Chengdong, GAO Baobin, NAN Hua, et al. Experimental study on acoustic emission characteristics during deformation and failure processes of coal samples under different stress paths[J]. Journal of Rock Mechanics and Engineering, 2009, 28(4): 757-766.
    [10]
    赵奎,冉珊瑚,曾鹏,等.含水率对红砂岩特征应力及声发射特性的影响[J].岩土力学,2021(4):1-10.

    ZHAO Kui, RAN Shanhu, ZENG Peng, et al. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone[J]. Rock and Soil Mechanics, 2021(4): 1-10.
    [11]
    刘鹏飞,郭佳奇,范俊奇,等.不同卸围压速率下花岗岩的力学性质及声发射特征[J].高压物理学报,2021(1):56-67.

    LIU Pengfei, GUO Jiaqi, FAN Junqi, et al. Mechanical properties and acoustic emission characteristics of granite under different unloading rates of confining pressures[J]. Chinese Journal of High Pressure Physics, 2021(1): 56-67.
    [12]
    李杰,邱黎明,殷山,等.煤岩膨胀破裂应变及声发射特征实验研究[J].工矿自动化,2021,47(2):63-69.

    LI Jie, QIU Liming, YIN Shan, et al. Experimental study on characteristics of strain and acoustic emission in the process of coal rock expansion and fracture[J]. Industry and Mine Automation, 2021, 47(2): 63-69.
    [13]
    郑坤,孟庆山,汪稔,等.珊瑚骨架灰岩三轴压缩声发射特性研究[J].岩土力学,2020,41(1):205.

    ZHENG Kun, MENG Qingshan, WANG Ren, et al. Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression[J]. Rock and Soil Mechanics, 2020, 41(1): 205.
    [14]
    李炜强,许沁舒,成功,等.单轴压缩下砂岩微破裂演化力学行为研究[J].煤炭科学技术,2020,48(11):60-67.

    LI Weiqiang, XU Qinshu, CHENG Gong, et al. Study on mechanical behavior of sandstone micro-fracture evolution under uniaxial compression test[J]. Coal Science and Technology, 2020, 48(11): 60-67.
    [15]
    刘国方,宋选民,霍昱名.基于CT技术的裂隙煤体细观数值重构方法[J].矿业研究与开发,2020,40(8):155-159.

    LIU Guofang, SONG Xuanmin, HUO Yuming. Micro-structure numerical reconstruction of fractured coal body based on CT technology[J]. Mining Research and Development, 2020, 40(8): 155-159.
    [16]
    刘超,马天辉,成小雨.不同角度结构面条件下裂隙煤岩破坏特征[J].煤矿安全,2015,46(9):218-220.

    LIU Chao, MA Tianhui, CHENG Xiaoyu. Failure characteristics of fractured coal and rock under the condition of different angles structure plane[J]. Safety in Coal Mines, 2015, 46(9): 218-220.
    [17]
    王雪龙,冯增朝,李慧,等.三轴加载下煤与瓦斯突出声发射可靠性分析[J].煤矿安全,2015,46(8):160.

    WANG Xuelong, FENG, Zengchao, LI Hui, et al. Reliability analysis of acoustic emission for coal and gas outburst under triaxial loading[J]. Safety in Coal Mines, 2015, 46(8): 160.
    [18]
    易婷,唐建新,王艳磊.裂隙倾角及数目对岩体强度和破坏模式的影响[J].地下空间与工程学报,2021,17(1):98-106.

    YI Ting, TANG Jianxin, WANG Yanlei. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 98-106.
    [19]
    卢晨刚,薛志文,夏红欣.基于MATLAB的碎裂煤二维裂隙自动识别与信息提取[J].煤炭与化工,2015, 38(5):20-22.

    LU Chengang, XUE Zhiwen, XIA Hongxin. Cataclastic coals with two-dimensional micro crack automatic recognition and information extraction based on MATLAB[J]. Coal and Chemical Industry, 2015, 38(5): 20-22.
    [20]
    王浩飞,张晓勇,况丹阳,等.裂隙煤体单轴压缩能量耗散离散元分析[J].矿业研究与开发,2019,39(4):27-32.

    WANG Haofei, ZHANG Xiaoyong, KUANG Danyang, et al. Discrete element analysis of energy dissipation in uniaxial compression of fractured coal[J]. Mining Research and Development, 2019, 39(4): 27-32.
    [21]
    李成杰,徐颖,冯明明,等.单轴荷载下类煤岩组合体变形规律及破坏机理[J].煤炭学报,2020,45(5):1773-1782.

    LI Chengjie, XU Ying, FENG Mingming, et al. Deformation law and failure mechanism of coal-rock-like combined body under uniaxial loading[J]. Journal of China Coal Society, 2020, 45(5): 1773-1782.
    [22]
    杨永杰,宋扬,陈绍杰.煤岩全应力-应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):3812-3815.

    YANG Yongjie, SONG Yang, CHEN Shaojie. Test study on permeability properties of coal specimens in complete stress-strain process[J]. Rock and Soil Mechanics, 2007, 28(2): 3812-3815.
    [23]
    VI Karev, DM Kilmov, YF Kovalenko, et al. Experimental study of rock creep under true triaxial loading[J]. Mechanics of Solids, 2020, 54: 1151-1156.
    [24]
    K Hashiba, K Fukui. Twenty-Year Creep Test with Tuff under Uniaxial Compression[J]. Geotechnical Testing Journal, 2020, 43: 800-808.
  • Related Articles

    [1]HUANG He, YUAN Yongmeng, ZHANG Dongxu. Application of gas-water switchable deep hole quick sampling device in Xima Coal Mine[J]. Safety in Coal Mines, 2021, 52(8): 123-127.
    [2]HUANG Beihai, FANG Chaofei, HE Long. Technique of Fast Sealing and Plugging Super-large Water Inrush Point by Three-dimensional Multi-horizontal Branch Locating Hole[J]. Safety in Coal Mines, 2019, 50(11): 88-90,94.
    [3]XU Weize. Design of Hydrological Telemetry System Based on ADuC845[J]. Safety in Coal Mines, 2019, 50(10): 132-135.
    [4]ZHANG Man, CHEN Ning, HE Jie, SHI Huixia. Application of Group Special Mobile Communication Technology in Mine Hydrology Monitoring[J]. Safety in Coal Mines, 2016, 47(7): 105-108.
    [5]XIE Shuxin, WANG Zhijian. Determination of Hydrological Observation Hole Location Based on DC Electrical Method[J]. Safety in Coal Mines, 2015, 46(8): 121-123,127.
    [6]WU Guiwu, GAO Jianping, LI Yugang, WANG Peng. Reasons Analysis of Water Inrush for Coal Mine in the East of Guizhou Province[J]. Safety in Coal Mines, 2015, 46(2): 172-174,178.
    [7]ZHAI Xiaorong, PENG Tao, WU Jiwen, DUAN Zhongwen, LIU Wenwu. The Water Inrush Mechanism of Roof Induced by Ground Gas Drainage Hole[J]. Safety in Coal Mines, 2014, 45(6): 5-7,11.
    [8]YANG Jian. The Fluorescence Properties of Dissolved Organic Matter in Zhuozishan Mine Groundwater[J]. Safety in Coal Mines, 2014, 45(2): 131-134,137.
    [9]WANG Yu-jie. Hydrological On-line Automatic Monitoring System for Coal Mining Under Reservoir[J]. Safety in Coal Mines, 2013, 44(3): 129-131.
    [10]ZHOU Jun, DING San-hong, PENG Long-chao, SHAN Jing-xin, HU Rong-jie. Underground Control Techniques and Practice of High-water Poor Sealing Hydrology Long-term Observation Hole[J]. Safety in Coal Mines, 2013, 44(2): 80-82.
  • Cited by

    Periodical cited type(1)

    1. 赵群. 大埋深高水压煤矿突水危险性分析及水害监测预警指标构建. 煤炭与化工. 2024(07): 61-65+70 .

    Other cited types(0)

Catalog

    Article views (15) PDF downloads (8) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return