• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SUN Jie. Influence of coal mining water level decline and soil reconfiguration on groundwater recharge in open pit mining area[J]. Safety in Coal Mines, 2021, 52(5): 59-65.
Citation: SUN Jie. Influence of coal mining water level decline and soil reconfiguration on groundwater recharge in open pit mining area[J]. Safety in Coal Mines, 2021, 52(5): 59-65.

Influence of coal mining water level decline and soil reconfiguration on groundwater recharge in open pit mining area

More Information
  • Published Date: May 19, 2021
  • Taking the soil samples collected at Baorixile Open-pit Mine as the research object, based on the relevant soil hydraulics parameters measured in the laboratory, the groundwater level in the field survey and the relevant meteorological data, the soil water migration law was studied in the aeration zone from 1990 to 2016, the feasibility of using soil water flux to estimate precipitation infiltration coefficient is discussed, and the effects of groundwater level decline and soil reconstruction of dump on precipitation infiltration coefficient are analyzed. The results showed that under the condition of natural rainfall, the average soil water flux at 10 m in the steppe area was 20.38 mm, and the average precipitation infiltration coefficient for many years was 0.06; with the increase of groundwater depth, the precipitation infiltration coefficient firstly decreases and then keeps stable at 2 m, that is to say, the drop of groundwater level in the mining area has little effect on the recharge of groundwater by precipitation; at present, the soil reconstruction model of “humus + clay + medium sand” can greatly improve the moisture content of humus and play a positive role in the vegetation restoration of open-pit dump, but to a certain extent, it reduces the infiltration coefficient of precipitation, which makes it unfavorable for groundwater to accept the recharge of meteoric precipitation.
  • [1]
    虎维岳,南生辉,柴建禄.大气降水对地下水补给的影响因素分析[J].地下水,1997(4):168-170.
    [2]
    NG GHC, MCLAUGHLIN D, ENTEKHABI D, et al. Probabilistic analysis of the effects of climate change on groundwater recharge[J]. Water Resources Research, 2010, 46(7): 501.
    [3]
    Qin D, QIAN Y, HAN L, et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium, and stable isotopes, in the Zhangye Basin, Northwest China[J]. Journal of Hydrology, 2011, 405(1): 194-208.
    [4]
    Huang T, Pang Z. Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal, 2011, 19(1): 177-186.
    [5]
    王强民,董书宁,王文科,等.生态脆弱矿区高强度植被恢复对地下水补给的影响[J].煤炭学报,2020,45(9):3245-3252.

    WANG Qiangmin, DONG Shuning, WANG Wenke, et al. Effects of high intensitive vegetation restoration on groundwater recharge in ecologically fragile mining area[J]. Journal of China Coal Society, 2020, 45(9): 3245-3252.
    [6]
    CAO G, SCANLON BR, HAN D, et al. Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain[J]. Journal of Hydrology, 2016, 537: 260-270.
    [7]
    李全生.东部草原区煤电基地开发生态修复技术研究[J].生态学报,2016,36(22):7049-7053.

    LI Quansheng. Research on ecological restoration technology of coal-power base in eastern steppe of China[J]. Acta Ecologica Sinica, 2016, 36(22): 7049.
    [8]
    HUO S, JIN M, LIANG X, et al. Changes of vertical groundwater recharge with increase in thickness of vadose zone simulated by one-dimensional variably saturated flow model[J]. Journal of Earth Science, 2014, 25(6): 1043-1050.
    [9]
    张施跃,束龙仓,闵星,等.基于土地利用类型的大气降水入渗补给量计算[J].吉林大学学报(地球科学版),2017,47(3):860-867.

    ZHANG Shiyue, SHU Longcang, MIN Xing, et al. Calculation of precipitation infiltration recharge based on land-use type[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3): 860-867.
    [10]
    尹德超,罗明明,张亮,等.基于流量衰减分析的次降水入渗补给系数计算方法[J].水文地质工程地质,2016,43(3):11-16.

    YIN Dechao, LUO Mingming, ZHANG Liang, et al. Methods of calculating recharge coefficient of precipitation event based on spring recession analyses[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 11-16.
    [11]
    杨国敏,王力.黑岱沟矿区排土场土壤水的氢氧稳定性同位素特征及入渗规律[J].煤炭学报,2015,40(4):944-950.

    YANG Guomin, WANG Li. Characteristics of stable isotopes and infiltration rule of soil water at dumping site in Heidaigou opencast coal mine[J]. Journal of China Coal Society, 2015, 40(4): 944-950.
    [12]
    Šimunek, J M Šejna, H Saito, et al. The hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media[D]. California: University of California Riverside, 2013: 342.
    [13]
    ALLEN R G, PEREIRAL S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage[M]. Rome: FAO-food and agriculture organization of the United Nations, 1998: 56.
    [14]
    VAN GENUCHTEN M T. A closed-form equation forpredicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [15]
    刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,35(2):68-76.

    LIU Jianli, XU Shao hui, LIU Hui. A review of development in estimating soil water retention characteristics from soil data[J]. Journal of Hydraulic Engineering, 2004, 35(2): 68-76.
    [16]
    CARSEL RF and PARRISH RS. Developing joint probability distributions of soil water retention Characteristics[J]. Water Resour. Res ,1988, 24: 755-769.
    [17]
    李娜,任理,唐泽军.降雨入渗条件下厚包气带土壤水流通量的模拟与分析[J].农业工程学报,2013,29(12):94-100.

    LI Na,REN Li, TANG Zejun. Modeling and analyzing water flow in a thick unsaturated zone during precipitation and infiltration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12): 94-100.
    [18]
    黄金廷.鄂尔多斯盆地沙漠高原区降雨入渗补给地下水研究[D].西安:长安大学,2006.
    [19]
    程学丰,刘登宪.利用矿区灰岩疏(放)水资料计算降水入渗系数[J].安徽理工大学学报(自然科学版),1994(4):1.

    CHENG Xuefeng, LIU Dengxian. The precipitation infiltration coefficient calculation method using limestone water drainage[J]. Journal of Anhui University of Science and Technology (Natural Science), 1994(4): 1.
    [20]
    吴奇凡,樊军,王继军.晋陕蒙接壤区露天矿不同质地土壤水分运动特征与模拟[J].煤炭学报,2015,40(5):1134-1142.

    WU Qifan, FAN Jun, WANG Jijun. Water movement and simulation of different soil textures at open pit mine in Jin-Shan-Meng adjacent region[J]. Journal of China Coal Society, 2015, 40(5): 1134-1142.
  • Related Articles

    [1]WANG Hai, WANG Chenguang, ZHANG Yan, ZHANG Honggang, HUANG Xuanming, MIAO Hechao. Groundwater control technology in open pit mines and its impact on stability of end-slopes[J]. Safety in Coal Mines, 2024, 55(2): 194-203. DOI: 10.13347/j.cnki.mkaq.20222211
    [2]WANG Peng. Detection of Groundwater in Thick Coal Seam Open Pit by TEM[J]. Safety in Coal Mines, 2019, 50(1): 153-156.
    [3]ZHANG Mei, LIU Qimeng, LIU Kaixuan. Hydrochemical Characteristics and Cause Analysis of Groundwater in Gubei Mining District[J]. Safety in Coal Mines, 2018, 49(5): 187-190.
    [4]ZHAO Caifeng, YANG Jian. Influence of Groundwater Recharge with High Salinity Mine Water on Groundwater Quality in Mu Us Desert[J]. Safety in Coal Mines, 2018, 49(3): 29-32.
    [5]ZHAO Chunhu, JIN Dewu. Numerical Simulation of Coal Mining on Groundwater System Disturbance in Shallow Buried Coal Seam of Western Mining Area[J]. Safety in Coal Mines, 2017, 48(1): 168-171.
    [6]JIAO Yang. Underground Recharge Runoff Discharge Characteristics and Aquifuge Characteristics at Ordovician Limestone Top of Chengzhuang Mine Field[J]. Safety in Coal Mines, 2014, 45(10): 24-27.
    [7]SONG Peide, FAN Li, PAN Jienan, ZHU Shaojun, WAN Xiaoqiang. Groundwater Types and Water Source Discriminantion for Xinzheng Mining Area[J]. Safety in Coal Mines, 2014, 45(2): 165-168.
    [8]YANG Jian. The Fluorescence Properties of Dissolved Organic Matter in Zhuozishan Mine Groundwater[J]. Safety in Coal Mines, 2014, 45(2): 131-134,137.
    [9]ZHOU Jian-jun. Risk Analysis on Adjacent Mine Water Inrush Caused by Groundwater Rebound of Abandoned Coal Mine[J]. Safety in Coal Mines, 2013, 44(7): 166-168,171.
    [10]WANG Meng-qian. The Application of GPR in the Detection of Groundwater Tables in Western Coal Mining Areas[J]. Safety in Coal Mines, 2013, 44(1): 133-136.
  • Cited by

    Periodical cited type(8)

    1. 田光. 干旱区露天矿排土场生态修复关键技术现状. 露天采矿技术. 2025(01): 34-38 .
    2. 王倩,韩京增. 非金属矿山开采土壤扰动重构对地下水补给的影响分析. 现代矿业. 2024(01): 236-238+242 .
    3. 张伟,郭小平,李文烨. 干旱矿区重构土体蓄水层适宜粒径级配研究. 水土保持研究. 2024(06): 290-298 .
    4. 张玉锴,阎凯,李博,黎李杨,杨松,普建丹,王楚燕,杨国东,张川. 中国土壤重构及其土水特性研究进展. 农业资源与环境学报. 2023(03): 511-524 .
    5. 王强民,赵春虎,王皓,孙洁,杨建,王文科. 寒旱露天矿区土壤水分运移规律及其生态效应. 煤田地质与勘探. 2023(06): 103-110 .
    6. 李禹凝,王金满,张雅馥,朱秋萍,王敬朋. 干旱半干旱煤矿区土壤水分研究进展. 土壤. 2023(03): 494-502 .
    7. 王格,郭欣伟,党素珍. 采煤扰动下潜水位及包气带水分变化特征. 农业工程学报. 2022(06): 105-112 .
    8. 祝琨. 矿山土地复垦不同压实密度土壤中菌根作用机理及生态效应研究. 矿业安全与环保. 2021(04): 28-32 .

    Other cited types(4)

Catalog

    Article views (60) PDF downloads (0) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return