• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Man, DU Xuefeng, CAO Xiangang, HUO Man, MA Huan. Study on arrangement method of air quantity sensor for main fan in coal mine[J]. Safety in Coal Mines, 2021, 52(4): 147-151,155.
Citation: LI Man, DU Xuefeng, CAO Xiangang, HUO Man, MA Huan. Study on arrangement method of air quantity sensor for main fan in coal mine[J]. Safety in Coal Mines, 2021, 52(4): 147-151,155.

Study on arrangement method of air quantity sensor for main fan in coal mine

More Information
  • Published Date: April 19, 2021
  • There is a problem of large measurement error in the front fan drift multi-point measurement method of the air quantity of the main fan currently in use. To solve this problem, the simulation model for three common fan drifts is established, and the variation law of airflow distribution caused by the installation of the wind sensor is analyzed. According to the cloud map of longitudinal velocity distribution in the fan drift, the airflow distribution at the section of the sensor mounting bracket changes dramatically due to the interference of the bracket. After 200 mm of the leading bracket section, the wind velocity distribution tends to be uniform and the influence of the bracket on the airflow is reduced. The influence is minimal at the leading bracket of 250 mm, which can be used as the reference position for the sensor probe installation. Taking the square fan drift as an example, the experimental verification is carried out. The results show that: the measurement error is the greatest when the sensors are installed at the cross-section of the bracket at the selected 8 working points. With the distance increase of the sensor is mounted forward, the measurement error decreases gradually and reaches the minimum at 250 mm.
  • [1]
    张庆华,姚亚虎,赵吉玉.我国矿井通风技术现状及智能化发展展望[J].煤炭科学技术,2020,48(2):97.

    ZHANG Qinghua, YAO Yahu, ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology, 2020, 48(2): 97.
    [2]
    周福宝,魏连江,夏同强,等.矿井智能通风原理、关键技术及其初步实现[J].煤炭学报,2020,45(6):2225.

    ZHOU Fubao, WEI Lianjiang, XIA Tongqiang, et al. Principle, key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2225.
    [3]
    刘剑,宋莹,李雪冰,等.基于LDA的均直巷道断面突扩风速分布规律实验研究[J].煤炭学报,2016,41(4):892-898.

    LIU Jian, SONG Ying, LI Xuebing, et al. Experimental study on wind speed distribution of the straight roadway andsudden enlarged sections based on LDA[J]. Journal of China Coal Society, 2016, 41(4): 892-898.
    [4]
    丁翠.梯形巷道平均风速分布特征的数值与实验研究[J].中国安全生产科学技术,2016,12(1):28-32.

    DING Cui. Numerical and experimental research on distribution characteristics of average wind speed in trapezoid roadway[J]. Journal of Safety Science and Technology, 2016, 12(1): 28-32.
    [5]
    罗永豪,赵阳升.煤矿井下不同粗糙度巷道内风速分布的风洞模拟[J].太原理工大学学报,2015,46(2):236-237.

    LUO Yonghao, ZHAO Yangsheng. Wind tunnel simulation on wind speed distribution in coal mine roadways within different roughness[J]. Journal of Taiyuan University of Technology, 2015, 46(2): 236-237.
    [6]
    张浪.巷道测风站风速传感器平均风速测定位置优化研究[J].煤炭科学技术,2018,46(3):96-102.

    ZHANG Lang. Optimized study on location to measure average air velocity with air velocity sensor in wind measuring station of underground mine[J]. Coal Science and Technology, 2018, 46(3): 96-102.
    [7]
    宋莹,刘剑,李雪冰,等.矿井巷道风流平均风速分布规律的试验与模拟研究[J].中国安全科学学报,2016, 26(6):146-151.

    SONG Ying, LIU Jian, LI Xuebing, et al. Experiment and numerical simulation of average wind speed distribution law of airflow in minetunnel[J]. China Safety Science Journal, 2016, 26(6): 146-151.
    [8]
    刘楚,邢玉忠.提高巷道风量测定精度的最大风速法[J].煤矿安全,2013,44(7):159.

    LIU Chu, XING Yuzhong. The maximum wind speed method to improve determination accuracy ofroadway air volume[J]. Safety in Coal Mines, 2013, 44(7): 159.
    [9]
    王军,陈开岩,黄帅.基于CFD数值模拟的矿井巷道平均风速单点测法[J].煤矿安全,2013,44(3):144.

    WANG Jun, CHEN Kaiyan, HUANG Shuai. Single-point method of mine roadway average wind speed based on cfd numerical simulation[J]. Safety in Coal Mines, 2013, 44(3): 144.
    [10]
    李曼,霍曼.矿井通风风量测量及误差补偿的仿真研究[J].中国安全科学学报,2018,28(5):153.

    LI Man, HUO Man. Simulation study on mine ventilation air quantity measurementand error compensation[J]. China Safety Science Journal, 2018, 28(5): 153.
    [11]
    李曼,马欢.矿井主通风机风量测试方法的模拟研究[J].煤炭科学技术,2017,45(2):151-155.

    LI Man, MA Huan. Simulation research on airflow measuring method of mine main ventilator[J]. Coal Science and Technology, 2017, 45(2): 151-155.
    [12]
    刘剑,李雪冰,宋莹,等.基于速度场系数的主通风机风量单点统计测量方法[J].有色金属工程,2018,8(2): 114-117.

    LIU Jian, LI Xuebing, SONG Ying, et al. Single-point statistical measurement of mine main ventilator based on field coefficient[J]. Nonferrous Metals Engineering, 2018, 8(2): 114-117.
  • Related Articles

    [1]ZHANG Jiaming, CHENG Hua, ZHANG Liangliang. Research on surface subsidence velocity and influencing factors by coal mining under thick loose layers and thin bedrock[J]. Safety in Coal Mines, 2024, 55(6): 151-159. DOI: 10.13347/j.cnki.mkaq.20231386
    [2]LIU Chenguang, LIU Yang, HE Shenglin, FANG Gang, LIANG Xiangyang, HUANG Hao. Study on Surface Subsidence Coefficient of Coal Seam Mining in Northern Shaanxi Mining Area[J]. Safety in Coal Mines, 2020, 51(12): 244-249.
    [3]YU Xueyi, MU Chi, ZHANG Dongdong. Study on Law of Surface Movement and Deformation in Thick Loose Layer with Large Mining Height[J]. Safety in Coal Mines, 2020, 51(4): 235-239,243.
    [4]ZHAO Bingchao, HE Shenglin. Analysis of Factors Affecting Surface Subsidence in Thick and Loose Seam with Shallow Coal Seam Mining[J]. Safety in Coal Mines, 2019, 50(7): 270-273.
    [5]TANG Zhu, LI Shuqing, HUANG Shouqing, WAN Fangfang. Research on Surface Movement Law for Fully-mechanized Top Coal Caving Under Thick Unconsolidated Layers[J]. Safety in Coal Mines, 2018, 49(6): 210-212,216.
    [6]YANG Junwei, HOU Defeng. Influence of Mining Degree on Surface Subsidence Characteristics Under the Condition of Mining Thick Unconsolidated Layers[J]. Safety in Coal Mines, 2017, 48(4): 52-54,58.
    [7]ZHANG Tingting, SUN Benkui, WANG Bingdu, FANG Pei. Cause Analysis of Synchronous Subsidence of Deep Unconsolidated Layer Shaft and Surface[J]. Safety in Coal Mines, 2017, 48(3): 175-177,181.
    [8]WEI Zhao, ZHAI Yingda, HOU Libin. Effect of Strip-filling Parameters on Surface Subsidence in Caocun Coal Mine[J]. Safety in Coal Mines, 2014, 45(10): 207-210.
    [9]WANG Weidong, QU Hua, ZHANG Peipeng, XU Bin, XU Li′na. Numerical Simulation for Controlling Surface Subsidence by Backfill Mining[J]. Safety in Coal Mines, 2014, 45(10): 181-183,186.
    [10]KANG Xinliang, HU Qingfeng, YUAN Tianqi, ZHOU Jianye, ZHAI Yan. Analysis of Mechanized Caving Mining Surface Movement and Deformation Laws in Guandi Mine[J]. Safety in Coal Mines, 2014, 45(1): 166-169.
  • Cited by

    Periodical cited type(4)

    1. 高潮,田斌,李治祥,刘玉德,郭敬中,芮文飞. 工作面矿压大数据动态分析与预测系统. 煤矿机械. 2024(02): 193-196 .
    2. 赵刚,成小雨,尉瑞. 高强综放开采覆岩破断与瓦斯涌出微震响应规律及应用. 中国矿业. 2022(09): 124-131 .
    3. 晋婷婷. 低瓦斯矿井瓦斯异常的原因分析与对策. 矿业装备. 2022(05): 204-206 .
    4. 孟浩. 大采高工作面顶板结构分析与支架工作阻力确定. 煤矿安全. 2021(10): 177-182+189 . 本站查看

    Other cited types(1)

Catalog

    Article views (18) PDF downloads (0) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return