• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LIU Chenguang, LIU Yang, HE Shenglin, FANG Gang, LIANG Xiangyang, HUANG Hao. Study on Surface Subsidence Coefficient of Coal Seam Mining in Northern Shaanxi Mining Area[J]. Safety in Coal Mines, 2020, 51(12): 244-249.
Citation: LIU Chenguang, LIU Yang, HE Shenglin, FANG Gang, LIANG Xiangyang, HUANG Hao. Study on Surface Subsidence Coefficient of Coal Seam Mining in Northern Shaanxi Mining Area[J]. Safety in Coal Mines, 2020, 51(12): 244-249.

Study on Surface Subsidence Coefficient of Coal Seam Mining in Northern Shaanxi Mining Area

More Information
  • Published Date: December 19, 2020
  • In order to solve the problem that the surface subsidence coefficient of shallow buried coal seam is difficult to determine in northern Shaanxi mining area, the data of surface rock displacement parameters in coal seam mining under different topographic conditions are collected in this paper. On the basis of analysis, three main influencing factors affecting the surface subsidence coefficient of the mining area are obtained, that is the ratio of bedrock thickness and overburden thickness JZ, the ratio of bedrock thickness and mining height JC, slope stability G. In addition to, taking JZ and JC as independent variables and combining topographic forms with piecewise function, the expression of surface subsidence coefficient is given respectively. The research results show that the surface subsidence coefficient of loess gully region should be mainly calculated by JZ, and the ratio of the height of the slope to the overall thickness of the loess cover should be considered. The JC of the ground surface subsidence coefficient should be calculated at aeolian sandy site. Through two engineering examples, the reliability of the piecewise function expression of surface subsidence coefficient with JC and JZ as independent variables is verified.
  • [1]
    钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-535.
    [2]
    袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.
    [3]
    卞正富,雷少刚,刘辉.风积沙区超大工作面开采生态环境破坏过程与恢复对策[J].采矿与安全工程学报,2016,33(2):306-310.
    [4]
    王文学,王四巍,刘海宁,等.采后覆岩裂隙岩体应力恢复的时空特征[J].采矿与安全工程学报,2017,34(1):127-132.
    [5]
    余学义,郭文彬,赵兵朝,等.巨厚黄土层宽条带开采地表移动规律及参数优化[J].煤炭科学技术,2016, 44(4):6-10.
    [6]
    冯军.黄土沟壑区沟谷坡度对采动裂缝发育规律的影响[J].煤矿安全,2015,46(5):216-219.
    [7]
    王金庄,常占强,陈勇.厚松散层条件下开采程度及地表下沉模式的研究[J].煤炭学报,2003,28(3):230.
    [8]
    陈俊杰,邹友峰,郭文兵.厚松散层下下沉系数与采动程度关系研究[J].采矿与安全工程学报,2012,29(2):251-254.
    [9]
    高荣久,胡振琪,谢宏全,等.特厚冲积层非主断面观测站岩移参数的求取[J].辽宁工程技术大学学报,2006,25(3):332-335.
    [10]
    郭文兵,邓喀中,邹友峰.地表下沉系数计算的人工神经网络方法研究[J].岩土工程学报,2003,25(2):212-215.
    [11]
    张文泉,刘海林,赵凯,等.厚松散层薄基岩条带开采地表沉陷影响因素研究[J].采矿与安全工程学报,2016,33(6):1065-1071.
    [12]
    邹友峰.地表下沉系数计算方法研究[J].岩土工程学报,1997,19(3):109-112.
    [13]
    赵兵朝,余学义.金属矿层开采地表下沉系数研究[J].金属矿山,2010 (3):126-130.
    [14]
    侯俊领,谢广祥,唐永志,等.厚冲积层薄基岩采场围岩三维力学特征[J].煤炭学报,2013,38(12):2114.
    [15]
    赵兵朝,同超,王文彬,等.黄土沟壑区煤层开采损害特征研究[J].矿业安全与环保,2015,42(5):108.
    [16]
    赵兵朝,同超,刘樟荣,等.西部生态脆弱区地表开采损害特征研究[J].中南大学学报,2017,48(11):156-163.
    [17]
    黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,21(8):1174-1177.
  • Related Articles

    [1]WU Bing, JIN Sha, ZHAO Chenguang, CUI Xinyuan. Quantitative evaluation of operation risk in tunneling process based on improved JHA-FRAM[J]. Safety in Coal Mines, 2022, 53(6): 242-246,251.
    [2]JI Yadong, HUANG Huan. Quantitative Evaluation on Dewatering of Roof Water in Synclinal Shaft Coal Seam[J]. Safety in Coal Mines, 2019, 50(9): 183-186.
    [3]DU Jingguo, JIANG Jianxun, HUO Zhengguang, SHEN Yunbo. Quantitative Evaluation on Fracture Development and Its Permeability of High-rank Coalbed MethaneReservoir[J]. Safety in Coal Mines, 2019, 50(6): 181-184.
    [4]YIN Shangxian, WU Zhiyuan. Quantitative Evaluation of Structural Complexity of Qianjiaying Mine Field[J]. Safety in Coal Mines, 2019, 50(5): 218-221.
    [5]REN Zhongjiu. Numerical Simulation of Roadway Surrounding Rock Damage Evaluation Based on Damage Risk Indexes[J]. Safety in Coal Mines, 2018, 49(6): 195-198.
    [6]YANG Zhibin, DONG Shuning. Influence Factors Analysis of Quantitative Evaluation of Single Borehole Grouting Effect by Water Pressure Test[J]. Safety in Coal Mines, 2018, 49(6): 187-194.
    [7]NI Xiaowei, AO Xuanfeng, LIANG Xiao, AI Lin, XU Guanyou, LIU Diren. Quantitative Identification of Coal Structure Based on Schlumberger Ratio and Crack Index[J]. Safety in Coal Mines, 2017, 48(8): 144-146,150.
    [8]SONG Laizhi, WANG Tongxu, HE Yong, LIU Wenjie, FANG Wubin. Rock Burst Evaluation of Half Isolated Island Face by Probability Index Diagnosis Method[J]. Safety in Coal Mines, 2015, 46(8): 209-211,215.
    [9]QIU Mei, SHI Long-qing, TENG Chao, XU Dong-jing, ZHANG Ji-peng, LIU Lei. Construction and Application of Structure Forecast of Quantitative Evaluation Model[J]. Safety in Coal Mines, 2013, 44(9): 207-210.
    [10]OUYANG Zhen-hua, FAN Shao-wu, QI Qing-xin, LI Wei. Development of Coal Mine Rock Burst Risk Comprehensive Evaluation System[J]. Safety in Coal Mines, 2012, 43(10): 97-100.
  • Cited by

    Periodical cited type(2)

    1. 李猛,李得建,唐谷修,张波,兰君,王成林. 结构带难采矿体上山掘进与浅孔留矿回采方法研究及应用. 中国有色金属. 2024(S2): 265-267 .
    2. 孔庆军,路庆彬,吴建宾,王强,拓龙龙. 大采高综放工作面停采撤架期间防灭火技术. 矿业安全与环保. 2020(05): 71-76 .

    Other cited types(0)

Catalog

    Article views (42) PDF downloads (0) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return