• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
DAI Mai, TANG Bin, WANG Yong, WANG Xuesong, WANG Zhenhua. Analysis of surrounding rock damage law of TBM tunneling roadway in coal mine jointed strata[J]. Safety in Coal Mines, 2021, 52(2): 194-200.
Citation: DAI Mai, TANG Bin, WANG Yong, WANG Xuesong, WANG Zhenhua. Analysis of surrounding rock damage law of TBM tunneling roadway in coal mine jointed strata[J]. Safety in Coal Mines, 2021, 52(2): 194-200.

Analysis of surrounding rock damage law of TBM tunneling roadway in coal mine jointed strata

More Information
  • Published Date: February 19, 2021
  • In order to research surrounding rocks failure characters and behaviors of TBM tunneling roadway in jointed strata, the paper takes methane drainage roadway of 1413A fully mechanized coal face in Zhangji Coal Mine as engineering case, the surrounding rocks failure characters and behaviors under TBM tunneling condition was studied by establishing UDEC discrete element method numerical model according to the site lithological conditions, joint development characteristics and geo-stress field conditions. The research results show that: joints and fracture distribution characters are main influential elements of roadway surrounding rock failure; damage and failure of rocks are prone to happen on the cross area of joints; in engineering practices, roof support and collapse prevention should be taken as the first priority. In-situ monitoring results are in good agreements with simulation results and the adopted research methodology are able to represent the in-situ conditions.
  • [1]
    张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007(2):226-238.

    ZHANG Jingjian, FU Bingjun. Advances in tunnel boring machine application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(2): 226-238.
    [2]
    程桦,唐彬,唐永志,等.深井巷道全断面硬岩掘进机及其快速施工关键技术[J/OL].煤炭学报:1-11. https://doi.org/10.13225/j.cnki.jccs.2019.0927.

    CHENG Hua, TANG Bin, TANG Yongzhi, et al. Deep-buried roadway full face tunnel boring machine and its rapid excavation key technologies[J/OL]. Journal of China Coal Society:1-11. https://doi.org/10.13225/j.cnki.jccs.2019.0927.
    [3]
    TANG Bin, CHENG Hua, TANG Yongzhi, et al. Excavation damaged zone depths prediction for TBM-excavated roadways in deep collieries[J]. Environmental Earth Sciences, 2018, 77(5): 165.
    [4]
    TANG Bin, CHENG Hua, TANG Yongzhi, et al. Experiences of gripper TBM application in shaft coal mine: a case study in Zhangji Coal Mine, China[J]. Tunnelling and Underground Space Technology, 2018, 81: 660-668.
    [5]
    黄兴,潘玉丛,刘建平,等.TBM掘进围岩挤压大变形机理与本构模型[J].煤炭学报,2015,40(6):1245.

    HUANG Xing, PAN Yucong, LIU Jianping, et al. Mechanism and constitutive model of large squeezing deformation in TBM tunneling[J]. Journal of China Coal Society, 2015, 40(6): 1245-1256.
    [6]
    刘泉声,黄兴,时凯,等.煤矿超千米深部全断面岩石巷道掘进机的提出及关键岩石力学问题[J].煤炭学报,2012,37(12):2006-2013.

    LIU Quansheng, HUANG Xing, SHI Kai, et al. Utilization of full face roadway boring machine in coal mines deeper than 1000 km and the key rock mechanics problems[J]. Journal of China Coal Society, 2012, 37(12): 2006-2013.
    [7]
    刘泉声,黄兴,时凯,等.超千米深部全断面岩石掘进机卡机机理[J].煤炭学报,2013,38(1): 78-84.

    LIU Quansheng, HUANG Xing, SHI Kai, et al. Jamming mechanism of full face tunnel boring machine in over thousand-meter depths[J]. Journal of China Coal Society, 2013, 38(1): 78-84.
    [8]
    黄兴.深部软弱地层 TBM 掘进围岩挤压大变形与卡机致灾机制[D].武汉:中国科学院武汉岩土力学研究所,2014.
    [9]
    SONG Fei, WANG Huaining, JIANG Mingjing. Analytical solutions for lined circular tunnels in viscoelastic rock considering various interface conditions[J]. Applied Mathematical Modelling, 2018, 55: 109-130.
    [10]
    王华宁,宋飞,蒋明镜.流变岩体中支护圆形隧道施工过程的时效理论解[J].同济大学学报(自然科学版),2016(12):1835-1844.

    WANG Huaning, SONG Fei, JIANG Mingjing. Analytical solutions for the construction of circular tunnel accounting for time-dependent characteristic of the rheological rock[J]. Journal of Tongji University(Natural Science), 2016(12): 1835-1844.
    [11]
    杨悦,单仁亮,陈孝国,等. 盾构法修建深部煤矿斜井的衬砌受力变化过程分析[J].煤炭技术,2017, 36(2):7-9.

    YANG Yue, SHAN Renliang, CHEN Xiaoguo, et al. Mechanical characteristics change process analysis of lining structure in deep coal mine inclined-shaft constructed by shield[J]. Coal Technology, 2017, 36(2): 7-9.
    [12]
    胡雄玉,晏启祥,何川,等.管片衬砌配合碎石可压缩层的斜井支护结构型式及其应用[J].岩石力学与工程学报,2016,35(3):579-591.

    HU Xiongyu, YAN Qixiang, HE Chuan, et al. A support structure of segment lining combined with compressible crushed stone and its applications in inclined shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 579-591.
    [13]
    唐彬.煤矿深部巷道TBM施工围岩稳定性与支护技术研究[D].淮南:安徽理工大学,2016.
    [14]
    唐彬,王传兵.立井煤矿硬岩TBM施工巷道支护设计技术[J].煤炭工程,2015,47(12):31-33.

    TANG Bin, WANG Chuanbin. Support design for hard rock TBM excavation roadways[J]. Coal Engineering, 2015, 47(12): 31-33.
    [15]
    YANG Shengqi, CHEN Miao, JING Hongwen, et al. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’an coal mine, China[J]. Engineering Geology, 2016: 89-101.
    [16]
    赵科,张剑.厚煤层大断面巷道支护技术研究[J].煤炭科学技术,2019,47(3):101-105.

    ZHAO Ke, ZHANG Jian. Study on support technology of large cross section gateway in thick seam[J]. Coal Science and Technology, 2019, 47(3): 101-105.
    [17]
    翟新献,涂兴子,李如波,等.深部软岩锚注支护巷道围岩变形机理研究[J].煤炭工程,2018,50(1):36.

    ZHAI Xinxian, TU Xingzi, LI Rubo, et al. Surrounding rock deformation mechanism of deep soft-rock roadway with bolt-grouting support[J]. Coal Engineering, 2018, 50(1): 36-41.
    [18]
    孟庆彬,韩立军,张建,等.深部高应力破碎软岩巷道支护技术研究及其应用[J].中南大学学报(自然科学版),2016,47(11):3861-3872.

    MENG Qingbin, HAN Lijun, ZHANG Jian, et al. Research and application of supporting technology in deep high stress fractured soft-rock roadway[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3861-3872.
    [19]
    唐彬,王传兵,侯俊领,等.深井煤矿TBM掘进巷道围岩损伤区震波CT监测[J].安徽理工大学学报(自然科学版),2017,37(6):21-26.

    TANG Bin, WANG Chuanbing, HOU Junling, et al. Monitoring on TBM excavation damage zone in deep-buried roadway based on seismic CT[J]. Journal of Anhui University of Science and Technology(Natural Science), 2017, 37(6): 21-26.
    [20]
    唐彬,程桦,唐永志,等.深井煤矿TBM掘进巷道围岩扰动特性监测研究[J].煤矿安全,2018,49(2):185-188.

    TANG Bin, CHENG Hua, TANG Yongzhi, et al. Monitoring study on disturbance characteristics of surrounding rock by TBM tunneling in deep roadway[J]. Safety in Coal Mines, 2018, 49(2): 185-188.
    [21]
    经来旺,陈思羽.富水软岩巷道复合支护技术与监测分析[J].煤矿安全,2018,49(8):231.

    JING Laiwang, CHEN Siyu. Composite support technology and monitoring analysis of water-rich soft rock roadway[J]. Safety in Coal Mines, 2018, 49(8): 231.
  • Related Articles

    [1]WANG Chunyao, ZHOU Jian, JIAN Junchang, ZHENG Xingbo, LUO Wei. Ventilation refrigeration and cooling technology of high temperature heat damaged mine[J]. Safety in Coal Mines, 2022, 53(9): 244-250.
    [2]JI Jianhu, ZHANG Mingyu, JIA Wenming, ZHANG Xijun. Research on Centralized Cooling System in Xiaoyun Coal Mine[J]. Safety in Coal Mines, 2019, 50(12): 97-101.
    [3]JI Jianhu, DING Xiyang, ZHANG Xijun, YAN Hongyuan, LIU Junjie, DONG Haomin. Centralized Cooling System in Yangcheng Coal Mine[J]. Safety in Coal Mines, 2018, 49(2): 103-106.
    [4]ZHANG Yongchun. Research on Treatment Technology and Cooling Effect of Thermal Damage in Zhuji Coal Mine[J]. Safety in Coal Mines, 2015, 46(10): 157-159.
    [5]WAN Liangliang, ZHANG Xijun, CHU Zhaoxiang. The Cooling Effect Analysis of Yongchuan Coal Mine Ventilation System Optimization[J]. Safety in Coal Mines, 2014, 45(6): 156-158.
    [6]ZHANG Jin, DU Jiping, RUAN Maliang. Heat-harm Treatment Technology in Suncun Coal Mine[J]. Safety in Coal Mines, 2014, 45(6): 65-68.
    [7]CHEN Zihu, JI Jianhu, ZENG Mingming. Application of Combined Cooling Heating and Power System in Mine Cooling System[J]. Safety in Coal Mines, 2014, 45(2): 100-101.
    [8]BI Chang-hu. Cooling Methods for Coal Mine Underground Emergency Refuge System[J]. Safety in Coal Mines, 2013, 44(6): 110-111,116.
    [9]XIN Song, FU Hui-long, YAN Xian-yun. New Designing Idea of Centralized Cooling System for Coal Mine[J]. Safety in Coal Mines, 2012, 43(3): 60-62,63.
    [10]FU Hui-long, SUN Xue-feng, XIN Song. Application of Local Cooling System in Deep Mine Advancement[J]. Safety in Coal Mines, 2012, 43(2): 99-101.
  • Cited by

    Periodical cited type(10)

    1. 王兆义,王经论,马梦想,焦仕学. 条带煤柱工作面冲击地压与“分级压裂”卸压模式研究. 煤炭与化工. 2025(01): 30-34 .
    2. 段金红,秦子晗,金建成,邵常雄,高健勋,李永元,张暤,王大龙,李高正. 特厚煤层孤岛煤柱水力扩孔防冲卸压技术研究. 煤炭工程. 2024(02): 81-86 .
    3. 王经论,成云海,孙鹏宫,高阳. 条带工作面采动应力分布规律及分级承载卸压研究. 煤炭与化工. 2024(11): 9-15 .
    4. 邹永洺,王金成. 大直径钻孔抽采采空区瓦斯技术研究. 山西煤炭. 2024(04): 50-57+71 .
    5. 辛晨晨. 基于数值模拟的钻孔卸压工艺参数对煤层力学性质影响研究. 陕西煤炭. 2024(12): 15-20+37 .
    6. 顾士坦,陈长鹏,韩传磊,荣维涛. 回采巷道防冲卸压与围岩大变形协调控制技术. 煤矿安全. 2023(05): 217-223 . 本站查看
    7. 谢军,李刚,姜安琪. 变直径卸压钻孔卸压参数模拟研究. 煤矿安全. 2023(07): 85-92 . 本站查看
    8. 高亚楠,张垚,张德飞,张玉栋,赵卫东,蔚立元. 千米深井解放层开采卸压机理及效果分析——以华丰煤矿为例. 煤田地质与勘探. 2023(08): 116-126 .
    9. 韩佳良,刘建林,唐胜利. 煤矿井下顶板高位大直径定向钻孔双级双速扩孔钻头研究. 煤矿安全. 2023(09): 194-201 . 本站查看
    10. 赵亚鹏. 不同锚杆支护参数对巷道支护作用的机理分析. 机械管理开发. 2022(09): 122-123+138 .

    Other cited types(5)

Catalog

    Article views (35) PDF downloads (0) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return