• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
Research on Determination of Coal Pillar Bearing Law and Width Based on Coal Damage Evolution[J]. Safety in Coal Mines, 2020, 51(8): 48-57.
Citation: Research on Determination of Coal Pillar Bearing Law and Width Based on Coal Damage Evolution[J]. Safety in Coal Mines, 2020, 51(8): 48-57.

Research on Determination of Coal Pillar Bearing Law and Width Based on Coal Damage Evolution

More Information
  • Published Date: August 19, 2020
  • In order to solve the on-site problems of unclear coal pillar bearing law and difficult determination of reasonable width, this paper uses numerical simulation and on-site industrial tests to analyze the wall rock deformation law, coal pillar bearing property evolution law, the law of internal crack propagation and support control of coal pillar. The evolution process and distribution characteristics of internal cracks of coal pillars under the influence of mining on both sides are analyzed, and the damage and failure mechanism of the expansion of the original cracks to the macro-fracture surface under mining stress is revealed, and the damage range on both sides of the coal pillar is determined. Based on the first damage of the coal pillar, the failure mechanism of the internal cracks of the coal pillar from the two sides to the middle after the roadway was excavated, and the distribution characteristics of the shear cracks and the tensile cracks and the pillar load were established. The stability of roadway surrounding rock corresponding to coal pillars different widths are studied, and finally the wind at 7106 face is determined. The reasonable width of the coal pillar of the roadway is 7.0 m; the coal pillar stability support control technology is proposed by using high-strength threaded steel bolts and double-ribbed double-beam reinforced ladder beam support, and using prestressed anchor cable to strengthen the support. Field application practice shows that the support control effect is good.
  • [1]
    姜福兴,成功,冯宇,等.两侧不规则采空区孤岛工作面煤体整体冲击失稳研究[J].岩石力学与工程学报, 2015,34(S2):4164-4170.
    [2]
    王宏伟,姜耀东,赵毅鑫,等.长壁孤岛工作面冲击失稳能量释放激增机制研究[J].岩石力学与工程学报, 2013,32(11):2250-2257.
    [3]
    张绪言.大采高回采巷道围岩控制技术研究[D].太原:太原理工大学,2010.
    [4]
    郑西贵,姚志刚,张农.掘采全过程沿空掘巷小煤柱应力分布研究[J].采矿与安全工程学报,2012,29(4):459-465.
    [5]
    司鑫炎,王文庆,邵文岗.沿空双巷合理煤柱宽度的数值模拟研究[J].采矿与安全工程学报, 2012,29(2):215-219.
    [6]
    张科学.深部煤层群沿空掘巷护巷煤柱合理宽度的确定[J].煤炭学报,2011,36(S1):28-35.
    [7]
    孔德中,王兆会,李小萌,等.大采高综放面区段煤柱合理留设研究[J].岩土力学,2014,35(S2):460-466.
    [8]
    柏建彪,侯朝炯.空巷顶板稳定性原理及支护技术研究[J].煤炭学报,2005(1):8-11.
    [9]
    李磊,柏建彪,徐营,等.复合顶板沿空掘巷围岩控制研究[J].采矿与安全工程学报,2011,28(3):376.
    [10]
    柏建彪,侯朝炯,黄汉富.沿空掘巷窄煤柱稳定性数值模拟研究[J].岩石力学与工程学报,2004,23(20):3475-3479.
    [11]
    张科学,郝云新,张军亮,等.孤岛工作面回采巷道围岩稳定性机理及控制技术[J].煤矿安全,2010,41(11):61-64.
    [12]
    王宏伟,姜耀东,高仁杰,等.长壁孤岛工作面冲击失稳能量场演化规律[J].岩土力学,2013,34(S1):479-485.
    [13]
    柏建彪,张金亮,王龙芳.孤岛综放面巷道支护机理和技术研究[J].矿山压力与顶板管理,2002(4):5.
    [14]
    张书国,亢利峰,黄辉.复合顶板孤岛面窄煤柱沿空掘巷锚网支护的应用[J].煤矿开采,2003(3):60.
    [15]
    柏建彪.沿空掘巷围岩控制[M].徐州:中国矿业大学出版社,2006.
    [16]
    张科学.高瓦斯煤层巷道布置及控制技术研究[D].徐州:中国矿业大学,2012.
    [17]
    华心祝,刘淑,刘增辉.孤岛工作面沿空掘巷矿压特征研究及工程应用[J].岩石力学与工程学报,2011, 30(8):1646-1651.
    [18]
    陆士良,郭育光.护巷煤柱宽度与巷道围岩变形的关系[J].中国矿业大学学报,1991,20(4):1-7.
    [19]
    陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [20]
    夏祥,李俊如,李海波,等.爆破荷载作用下岩体振动特征的数值模拟[J].岩土力学,2005(1):50-56.
    [21]
    崔楠,马占国,杨党委,等.孤岛面沿空掘巷煤柱尺寸优化及能量分析[J].采矿与安全工程学报,2017, 34(5):914-920.
    [22]
    康红普.我国煤矿巷道锚杆支护技术发展60年及展望[J].中国矿业大学学报,2016,45(6):1071-1081.
    [23]
    范明建,康红普.锚杆预应力与巷道支护效果的关系研究[J].煤矿开采,2007(4):1-3.
  • Related Articles

    [1]ZHU Jiasheng. Support Effect and Numerical Simulation Analysis of Over Roadway Mining in Bulianta Coal Mine[J]. Safety in Coal Mines, 2018, 49(S1): 95-98.
    [2]XIE Fuxing, DONG Shizhuo, LIU Yang, LIANG Zhipeng, GUO Peng. Numerical Simulation on Surrounding Rock Stability of Gob-side Entry in Large Height Mining Face[J]. Safety in Coal Mines, 2018, 49(11): 215-219,223.
    [3]ZHANG Yufei, LI Xuguang, ZHUANG Zefeng, YANG Han, YE Jianping, JIANG Zekun. Numerical Simulation Optimization Study on Width of Narrow Coal Pillar in Deep Coal Seam[J]. Safety in Coal Mines, 2018, 49(10): 225-229,233.
    [4]LI Shengxin, DU Zhaoyang, ZHAI Chunjia. Narrow Coal Pillar Width and Surrounding Rock Control of Gob-side Entry Driving with Extra-thick Coal Seam by Fully Mechanized Mining Face[J]. Safety in Coal Mines, 2018, 49(5): 147-150.
    [5]ZHANG Hongli, ZHANG Qiang, ZHANG Shengxuan, LI Hongchao. Supporting Failure Analysis in Deep Large Section Coal Roadway and Control Strategy[J]. Safety in Coal Mines, 2018, 49(1): 172-175.
    [6]LIU Xinjiang. Numerical Simulation of Bolt and Cable Supporting Stability for Large Deformation Roadway[J]. Safety in Coal Mines, 2016, 47(5): 193-196.
    [7]WANG Changxiang, ZHANG Xinguo, Konghe. Numerical Simulation and Orthogonal Test About Gateway Supporting and Coal Pillar Size[J]. Safety in Coal Mines, 2016, 47(2): 47-50.
    [8]SUN Yuhong, WANG Sheng, NIE Liwu. Evaluation of Coal Handling Roadway Stability Under the Coupling Action of Open-underground Combined Mining and Controlling Technology[J]. Safety in Coal Mines, 2014, 45(2): 41-43.
    [9]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.
    [10]XU Dun-shan, WANG Li-min, WEI Ping, ZHAO Tong-bin. Numerical Simulation of Stability Influence of Zouwu Coal Mine Pillar Mining on Lower Roadway[J]. Safety in Coal Mines, 2013, 44(5): 69-71,75.
  • Cited by

    Periodical cited type(3)

    1. 张守宝,何基源,宋沄玮,何潇,张振宇,李东东,李垚志,郭明. 基于中性区特征的沿空掘巷煤柱宽度分析与实践. 煤矿安全. 2022(07): 208-214 . 本站查看
    2. 韩金博. 近距离煤层开采区段煤柱破裂分形维数研究. 煤矿安全. 2021(11): 69-76 . 本站查看
    3. 李卓楠,权春阳,赵波,刘钊. 区段煤柱气相切顶卸压围岩应力转移机理研究. 能源与环保. 2021(08): 280-288 .

    Other cited types(3)

Catalog

    Article views (9) PDF downloads (0) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return