SHANG Jianhua, LIU Huihu, SANG Shuxun, XU Hongjie. Coupling Analysis on Permeability and Pore Fracture Development in High Rank Coal Reservoirs of Southern Qinshui Basin[J]. Safety in Coal Mines, 2020, 51(6): 184-190.
    Citation: SHANG Jianhua, LIU Huihu, SANG Shuxun, XU Hongjie. Coupling Analysis on Permeability and Pore Fracture Development in High Rank Coal Reservoirs of Southern Qinshui Basin[J]. Safety in Coal Mines, 2020, 51(6): 184-190.

    Coupling Analysis on Permeability and Pore Fracture Development in High Rank Coal Reservoirs of Southern Qinshui Basin

    More Information
    • Published Date: June 19, 2020
    • To analyze the coupling relationship between permeability of high rank coal reservoir and pore and fracture development, taking No.3 coal reservoir in southern Qinshui Basin as the research object, and pore structure was studied by fractal theory. Fractal characteristics, using geometric fractal model to calculate the contribution ratio of different pore size to coal and rock permeability, linearly fitting the correlation between permeability and pore fractal dimension, volume percentage, Ro,max and other factors. The results show that the pore-fracture volume is mainly micro-pore, and the specific surface area ratio is the highest; the pore type is mainly semi-closed pore; the average porosity of coal sample is 4.652%, and the average permeability is 8.68×10-5 μm2. The contribution of macro-pore and fracture to permeability is 99.809%, and the permeability of 3# coal reservoir in southern Qinshui Basin is mainly comes from the contribution of macropores and fractures. There is a weak correlation between permeability, porosity and Ro,max, which increases first and then decreases with the increase of metamorphic degree. Permeability is positively correlated with fractal dimension of mesopore, macropore and fracture, and negatively correlated with fractal dimension of micropore.
    • [1]
      陆小霞,黄文辉,陈燕萍,等.沁水盆地南部深煤层孔隙结构特征[J].东北石油大学学报,2015,39(3):41.
      [2]
      王新民.含煤地层煤与页岩储层纳米级孔隙结构精细对比[J].中国煤炭地质,2018,30(S1):32-39.
      [3]
      刘建国.沁水盆地东南部煤储层孔隙结构及其吸附性能研究[D].焦作:河南理工大学,2016.
      [4]
      胡咤咤,黄文辉,陆小霞,等.沁水盆地南部3号与15号煤层孔隙特征对比分析[J].煤炭科学技术,2015,43(S1):173-178.
      [5]
      戚灵灵,王兆丰,杨宏民,等.基于低温氮吸附法和压汞法的煤样孔隙研究[J].煤炭科学技术,2012,40(8):36-39.
      [6]
      降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609-614.
      [7]
      傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005(S1):51-55.
      [8]
      傅雪海,秦勇,薛秀谦.分形理论在煤储层物性研究中的应用[J].煤,2000(4):1-3.
      [9]
      傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001(3):11-14.
      [10]
      王博洋,秦勇,申建,等.鄂尔多斯盆地紫金山地区煤孔隙分形规律及其主控地质因素分析[J].高校地质学报,2017,23(3):499-510.
      [11]
      安士凯,桑树勋,李仰民,等.沁水盆地南部高煤级煤储层孔隙分形特征[J].中国煤炭地质,2011,23(2):17-21.
      [12]
      郑斌,李菊花.基于Kozeny-Carman方程的渗透率分形模型[J].天然气地球科学,2015,26(1):193-198.
      [13]
      李留仁,袁士义,胡永乐.分形多孔介质渗透率与孔隙度理论关系模型[J].西安石油大学学报(自然科学版),2010,25(3):49-51.
      [14]
      刘俊亮,田长安,曾燕伟,等.分形多孔介质孔隙微结构参数与渗透率的分维关系[J].水科学进展,2006(6):812-817.
      [15]
      张松航,唐书恒,汤达祯,等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报,2009,38(5):713-718.
      [16]
      尹帅,谢润成,丁文龙,等.常规及非常规储层岩石分形特征对渗透率的影响[J].岩性油气藏,2017,29(4):81-90.
      [17]
      高为,易同生,金军,等.黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J].煤炭学报,2017,42(5):1258-1265.
      [18]
      姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.
      [19]
      崔兆帮,侯晓伟,刘刚.深部煤储层孔隙结构特征及其分形规律研究[J].煤炭技术,2016,35(10):132.
      [20]
      Yidong Cai,Dameng Liu,Zhejun Pan, et al. Investigating the Effects of Seepage-Pores and Fractures on Coal Permeability by Fractal Analysis[J]. Transport in Porous Media, 2016, 111(2):479-497.
      [21]
      周三栋,刘大锰,蔡益栋,等.低阶煤吸附孔特征及分形表征[J].石油与天然气地质,2018,39(2):373.
    • Related Articles

      [1]LIU Haidong, LIU Yanchi, LIN Baiquan, LIU Ting. “Three zones” rule of spontaneous combustion in goaf under overburden separation grout filling[J]. Safety in Coal Mines, 2024, 55(7): 68-77. DOI: 10.13347/j.cnki.mkaq.20231244
      [2]CAO Xiwu, TIAN Maolin, XIAO Hongtian, HAN Lijun. Study on diffusion range and reinforcement characteristics of coupling grouting slurry in deep roadway[J]. Safety in Coal Mines, 2023, 54(11): 116-123. DOI: 10.13347/j.cnki.mkaq.2023.11.002
      [3]LI Lin, GU Wei, SONG Gang. Combined grouting and reinforcement technology for deep and shallow holes in soft and broken coal roadway[J]. Safety in Coal Mines, 2021, 52(9): 108-115,121.
      [4]XU Changyu, HAN Lijun, TIAN Maolin, WANG Yajie. Coupled Grouting Reinforcement Mechanism and Displacement Back Analysis of Mechanical Parameters of Surrounding Rock[J]. Safety in Coal Mines, 2020, 51(11): 155-160.
      [5]LIU Chao, ZHAO Yajie, YANG Mingyang. Numerical Simulation Analysis of Rock Mass Splitting Characteristics Under Different Locations Between Grouting Hole and Surrounding Rock Fractures[J]. Safety in Coal Mines, 2018, 49(10): 203-206,212.
      [6]MA Ziyang, WANG Tongxu, LIU Canhua, QU Kongdian. Numerical Simulation of Dynamic Grouting for Deep Soft Rock Roadway and Its Application[J]. Safety in Coal Mines, 2018, 49(8): 239-242.
      [7]ZHAO Bin, WANG Meng, TAO Guangmei, ZHANG Jiangli, SI Chao. Effect of Arrangement Forms on Advance Pre-grouting in Working Face[J]. Safety in Coal Mines, 2017, 48(12): 207-210.
      [8]FU Yilong, KANG Tianhe. Numerical Simulation of Reinforcement Method and Its Effect for High Stress Broken Chamber[J]. Safety in Coal Mines, 2017, 48(2): 192-195.
      [9]LIU Na, HUANG Zhongfeng, ZHENG Xigui. Numerical Analysis on Hollow Grouting Anchor Cable Based on FLAC3D[J]. Safety in Coal Mines, 2016, 47(6): 194-197,201.
      [10]CHEN Chunhui, SONG Xuanmin. Comprehensive Control of Roadway in Broken Roof Strata Based on Depth Hole and Shallow Hole Grouting Technology[J]. Safety in Coal Mines, 2016, 47(4): 161-164.

    Catalog

      Article views (23) PDF downloads (0) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return