• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Jiangshi, LIU Shaocan, FAN Zhaoyan. Formulation Optimization Experiment of New Chemical Dust Suppressant for Coal Dust[J]. Safety in Coal Mines, 2020, 51(6): 31-36.
Citation: ZHANG Jiangshi, LIU Shaocan, FAN Zhaoyan. Formulation Optimization Experiment of New Chemical Dust Suppressant for Coal Dust[J]. Safety in Coal Mines, 2020, 51(6): 31-36.

Formulation Optimization Experiment of New Chemical Dust Suppressant for Coal Dust

More Information
  • Published Date: June 19, 2020
  • To effectively solve the problems of low efficiency of dust suppressant to fine dust and corrosion of spray to equipment and facilities, based on the working mechanism of the chemical dust suppressant, taking the surface tension, contact angle, sedimentation time and settling time as the indicators, the monomer experiments were designed from the aspects of water retention and wettability, and the four chemical dustproof monomers(non-ionic PAM, SA, JFC and DTAB) were selected from the 14 dustproof agents. On the basis of orthogonal test, the best dust inhibitor formulation is optimized as polyacrylamide(non-ionic PAM), sodium alginate, fatty alcohol polyoxyethylene ether, lauryl trimethylammonium bromide and bovine tallow amine, and the mass fraction is 0.20%, 0.15%, 0.20%, 0.09% and 0.01%, respectively. The practical test results show that the formula has good dust-reducing effect, high safety and low corrosivity. The dust removal rate is about 90.0%, the PM10 dust removal rate is about 83.1%, and the respiratory dust removal rate is about 82.4%. The PM2.5 dust removal rate is about 77.3%, and the PM1 dust removal rate is about 53.5%.
  • [1]
    王爱珉,尚红光.2325例煤矿粉尘作业人员健康状况分析[J].现代预防医学,2015,42(21):3860-3862.
    [2]
    吴超.化学抑尘[M].长沙:中南大学出版社,2003.
    [3]
    黄维刚,胡夫,刘楠琴.表面活性剂对煤尘湿润性能的影响研究[J].矿业安全与环保,2010,37(3):4-6.
    [4]
    李满.表面活性剂促进煤尘润湿的作用研究[D].北京:中国矿业大学(北京),2008.
    [5]
    王鹏飞,刘荣华,桂哲,等.煤矿井下气水喷雾雾化特性及降尘效率理论研究[J].煤炭学报,2016,41(9):2256-2262.
    [6]
    郑晓民,马勇刚,范酒源,等.煤尘抑制剂在综采工作面降尘中的应用研究[J].煤炭工程,2017,49(5):55.
    [7]
    李成,朱逢豪,付兴民,等.关于抑尘剂开发及其存在主要问题的探讨[J].环境工程,2013,31(S1):360.
    [8]
    刘博,张明军,文虎.煤尘抑尘剂的研究应用现状及发展趋势[J].煤矿安全,2018,49(8):206-209.
    [9]
    葛少成,康卓伟,荆德吉,等.新型高分子抑尘剂的性能实验研究[J].中国安全生产科学技术,2016,12(10):56-61.
    [10]
    杨静,刘丹丹,祝秀林,等.化学抑尘剂的研究进展[J].化学通报,2013,76(4):346-353.
    [11]
    陈高林,王飞,郭红光.抑尘剂技术研究现状及发展趋势[J].煤炭技术,2014,33(11):340-342.
    [12]
    Jin L, Lu W. Corrosion inhibition of a hygroscopic inorganic dust-depressor[J]. Journal of University of Science & Technology Beijing, 2006, 13(4): 368-371.
    [13]
    耿卫国,宋丽华,宋强,等.煤矿粉尘化学抑尘剂的试验研究[J].煤矿安全,2018,49(11):33-38.
    [14]
    王天乐,张亚,杨满征.新型复合煤尘抑制剂的制备及特性研究[J].煤炭工程,2019,51(3):113-116.
    [15]
    杨静,王琨,房孝敏.新型煤尘抑尘剂的研制与性能测试[J].煤矿安全,2011,42(8):1-4.
    [16]
    郑云海,田森林,李林,等.基于表面活性剂的施工扬尘抑尘剂及其性能[J].环境工程学报,2017,11(4):2391-2396.
    [17]
    杨静,谭允祯,王振华,等.煤尘表面特性及润湿机理的研究[J].煤炭学报,2007(7):737-740.
    [18]
    金龙哲,杨继星,欧盛南.润湿型化学抑尘剂的试验研究[J].安全与环境学报,2007(6):109-112.
    [19]
    Jing Yang, Dandan Liu, Bingjie Liu, et al.Research on mine dustfall agents based on the mechanism of wetting and coagulation[J]. International Journal of Min-erals Metallurgy and Materials, 2014, 21(3): 205.
    [20]
    张丽颖.复配润湿剂对改善煤尘润湿效果的研究[J].矿业安全与环保,2017,44(1):25-27.
    [21]
    Dou G, Xu C. Comparison of effects of sodium carboxymethylcellulose and superabsorbent polymer on coal dust wettability by surfactants[J/OL]. Journal of Dispersion Science and Technology, 2016: 1-5. https://www.onacademic.com/detail/journal_1000039772064 610_8925.html.
  • Related Articles

    [1]HAO Gang, YU Dinghao, XU Ying, WANG Li, LIU Hong. Numerical simulation and field test of height of caving zone and fracture zone in Heshan Coal Mine[J]. Safety in Coal Mines, 2023, 54(9): 174-179. DOI: 10.13347/j.cnki.mkaq.2023.09.023
    [2]WAN Feng, ZHANG Hongqing, ZHOU Peijun, GUO Jie. Numerical simulation study on effect of bedrock intrusion on strata behaviors of roadway[J]. Safety in Coal Mines, 2021, 52(10): 211-216.
    [3]WANG Xiaojian, LI Zhaosheng, ZHANG Liangliang, SUN Shiyuan, SHEN Renwei, FANG Gensheng. Numerical analysis of time-sharing differential freezing temperature field in coal mine[J]. Safety in Coal Mines, 2021, 52(7): 200-206.
    [4]LI Li. Application of Numerical Simulation in Analyzing Water Flowing Fractured Zone in Coal[J]. Safety in Coal Mines, 2017, 48(10): 160-162,166.
    [5]CUI Kai, ZHANG Zhao-qian, ZHANG Bai-sheng, XIE Fu-xing. Study on Strata Behavior Laws at Hard Roof Working Face in Jincheng Mining Area[J]. Safety in Coal Mines, 2013, 44(12): 166-168,171.
    [6]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.
    [7]MA Mang-li. Strata Behavior Simulation and Field Measurement for Fully Mechanized Mining Face in Thick Seam[J]. Safety in Coal Mines, 2013, 44(8): 226-228.
    [8]WANG Yi-dong, JIANG Zhen-quan, ZHU Shu-yun, ZHANG Rui. Contrast of Numerical Simulation and Field Measurement on Deformation and Failure in Thick Seam Mining Floor[J]. Safety in Coal Mines, 2012, 43(10): 35-37.
    [9]CHANG Gang, JIANG Zhen-quan, JIA Xue-mei, ZHANG Rui, SUN Qiang. Study on Roof Strata Behavior Laws of A Certain Coal Mine During Mining[J]. Safety in Coal Mines, 2012, 43(7): 38-41.
    [10]YANG Ming, MENG Xiang-rui, GAO Zhao-ning, CHENG Xiang. Numerical Simulation of Ground Strata behavior Laws of Overlying Strata Movement at Stope[J]. Safety in Coal Mines, 2012, 43(6): 17-20,21.
  • Cited by

    Periodical cited type(19)

    1. 丁华忠,王力,景慎怀,黄寒静,陈洪岩,程合玉,李明强,曾庆辉,聂超. 松软煤层条带预抽底板梳状孔成孔及飞管完孔技术研究. 煤炭技术. 2025(03): 141-145 .
    2. 聂子淇,王超群. 煤矿复杂地层底板梳状定向钻孔钻进工艺技术研究. 能源与节能. 2024(01): 153-157 .
    3. 杨旭,王涛,李明. 孤岛工作面长水平深孔全长水力压裂卸压机理及多参量效果分析. 煤矿安全. 2024(02): 147-158 . 本站查看
    4. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 .
    5. 张洪祯. 高位定向长钻孔瓦斯抽采技术在高山煤矿瓦斯治理中的应用. 科技创新与应用. 2024(20): 189-192 .
    6. 李定启,张浩海. 五阳煤矿松软煤层定向水射流卸压增透技术研究. 矿业研究与开发. 2024(09): 116-122 .
    7. 倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究. 工矿自动化. 2023(01): 146-152 .
    8. 李鹏. 水力压裂技术在煤矿瓦斯治理中的应用研究. 内蒙古煤炭经济. 2023(02): 4-6 .
    9. 武瑞龙. 复杂地层底板梳状定向钻孔抽采瓦斯技术研究. 煤炭工程. 2023(06): 79-82 .
    10. 王正帅. 碎软煤层条带定向长钻孔水力压裂强化瓦斯抽采技术研究. 中国煤炭. 2023(06): 46-52 .
    11. 贾猛. 郭庄矿井下新型水力压裂技术的应用分析. 山东煤炭科技. 2023(08): 188-190 .
    12. 李建军,刘文岗,杜君武,任健刚. 定向长钻孔分段水力压裂技术在布尔台煤矿的应用. 煤矿安全. 2022(04): 94-102 . 本站查看
    13. 吴晋军. 长平矿大功率定向长钻孔瓦斯抽采技术实践. 江西煤炭科技. 2022(02): 165-167+170 .
    14. 赵坤,李文,欧聪. 穿层梳状分支孔煤层段精准水力压裂工程试验. 煤矿安全. 2022(06): 89-95 . 本站查看
    15. 魏启磊. 松软低透煤层掘进工作面聚能爆注定向卸压一体化技术研究. 煤. 2022(08): 49-52 .
    16. 张士岭,宋志强. 基于速度势的多抽采钻孔干扰理论. 矿业研究与开发. 2022(09): 22-28 .
    17. 何明川. 层状构造煤层定向钻孔水力压裂瓦斯高效抽采技术. 煤矿安全. 2022(12): 62-67 . 本站查看
    18. 吕二忠. 水力冲孔技术在瓦斯抽采中的应用. 科学技术创新. 2021(29): 129-131 .
    19. 贺斌,雷鹏翔,弓仲标. 水力压裂技术在大柳塔煤矿52502工作面的应用. 煤炭科学技术. 2021(S2): 78-84 .

    Other cited types(0)

Catalog

    Article views (26) PDF downloads (0) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return