YANG Yuliang, JIANG Jinhu, LIU Chuang, YANG Mu, LIU Shikai, WANG Liang, ZHU Xiaofeng, QIAO Hongjun. Creep Properties and Constitutive Relation of Anthracite Under Temperature-Stress Coupling[J]. Safety in Coal Mines, 2020, 51(5): 61-65.
    Citation: YANG Yuliang, JIANG Jinhu, LIU Chuang, YANG Mu, LIU Shikai, WANG Liang, ZHU Xiaofeng, QIAO Hongjun. Creep Properties and Constitutive Relation of Anthracite Under Temperature-Stress Coupling[J]. Safety in Coal Mines, 2020, 51(5): 61-65.

    Creep Properties and Constitutive Relation of Anthracite Under Temperature-Stress Coupling

    More Information
    • Published Date: May 19, 2020
    • To study the creep characteristics of anthracite under temperature-stress coupling, the muti-functional rock testing machine was used to conduct the tri-axial creep tests under the confining pressure of 20 MPa, the axial pressure of 5 MPa, and the temperatures of 30 ℃, 60 ℃ and 90 ℃, respectively. The results show that the instantaneous strain increases nonlinearly with the increase of temperature. The instantaneous strain at 30 °C, 60 °C and 90 °C is 0.666%, 0.908 4% and 1.272 7%, respectively. The increase of temperature can increase the damage process of deceleration creep and steady state creep of coal. During the creep process of 72 h, the creep strain at 30 °C, 60 °C and 90 °C is 0.503%, 0.581 6% and 0.686 3%, respectively. Based on the nonlinear rheological mechanics theory, a nonlinear viscoelastic-plastic constitutive model is established. According to the creep test results, the model is fitted by curve fitting method. The results show that the anastomosis effect is good, indicating that the model can better describe the creep process of anthracite under temperature-stress coupling.
    • [1]
      周长冰,万志军,张源.高温三轴应力下气煤蠕变特性及本构模型[J].煤炭学报,2012,32(12):2020-2025.
      [2]
      尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响实验研究[J].岩石力学与工程学报,2009,28(4):696-702.
      [3]
      尹光志,张东明,何巡军.含瓦斯煤蠕变试验及理论模型研究[J].岩土工程学报,2009,31(4):529-532.
      [4]
      赵洪宝,尹光志,张卫中.围压作用下型煤蠕变特性及本构关系研[J].岩土力学,2009,30(8):2305-2308.
      [5]
      ShengQi Yang, PengXu, P G Ranjith. Damage model of coal under creep and triaxial compression[J].International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 337-345.
      [6]
      Yang S, Jing H, Cheng L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone[J]. Engineering Geology, 2014, 179: 10-23.
      [7]
      Li Xiangchun, Yang Chunli,Ren Ting, et al. Creep behaviour and constitutive model of coal filled with gas[J]. International Journal of Mining Science and Technology, 2017, 27(5): 847-851.
      [8]
      高赛红,曹平,汪胜莲,等.改进的岩石非线性粘弹塑性蠕变模型及其硬化粘滞系数的修正[J].煤炭学报,2012,37(6):936-943.
      [9]
      范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2):391-396.
      [10]
      宋勇军,雷胜友,刘向科.基于硬化和损伤效应的岩石非线性蠕变模型[J].煤炭学报,2012,37(S2):287-292.
      [11]
      CHEN L, WANG C P, LIU J F, et al. A damage-mechanism-based creep model considering temperature effect in granite[J]. Mechanics Research Communications, 2014, 54: 76-82.
      [12]
      WANG G J, ZHANG L, ZHANG Y W, et al.Experimental investigations of the creep-damagerupturebehavior of rock salt[J]. International Journal of Rock Mech anics & Mining Sciences,2014,66:181-187.
      [13]
      王军保,刘新荣,郭建强,等.盐岩蠕变特性及其非线性本构模型[J].煤炭学报,2014,39(3):445-451.
      [14]
      赵延林,曹平,文有道,等.岩石粘弹塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486.
    • Related Articles

      [1]HE Haihong, MA Xiaohui, CHENG Hongtao, LI Jingkun, ZHANG Chaofan, DING Ziwei. Study on parameters optimization of fully mechanized excavation support in coal roadway based on empty roof theory[J]. Safety in Coal Mines, 2023, 54(1): 125-134.
      [2]ZHU Shikui, DING Ke. Optimization of support parameters of water rich roadway based on thickness of grouting reinforcement circle[J]. Safety in Coal Mines, 2021, 52(7): 193-199,206.
      [3]YANG Haobo. Deformation Characteristics and Supporting Parameters Optimization of Broken Surrounding Rock Roadway[J]. Safety in Coal Mines, 2019, 50(9): 160-163.
      [4]ZHANG Qi, YANG Xiao, QIAO Boyang. Surrounding Rock Destruction Characteristics and Support Parameters Optimization of Mining Roadway in Jinjie Mine[J]. Safety in Coal Mines, 2019, 50(6): 219-223,229.
      [5]WANG Zijun, CHAI Lu. Surrounding Rock Control Technology for Soft Rock Roadway Under Unilateral Mining Influence[J]. Safety in Coal Mines, 2018, 49(6): 62-65.
      [6]CHEN Daguang. Roadway Supporting Parameters Analysis and Process Optimization for Excavation and Bolting Integration[J]. Safety in Coal Mines, 2017, 48(10): 224-227,231.
      [7]MA Ji, DENG Lei. Supporting Parameter Optimization for Deep Coal Roadway with High Stress Based on Mine Pressure Monitoring[J]. Safety in Coal Mines, 2016, 47(7): 204-207.
      [8]YANG Peng, HUA Xinzhu, LI Hongliang, CHEN Denghong. Failure Characteristics of Roadway Surrounding Rock Under Blasting Vibration and Its Control Technology[J]. Safety in Coal Mines, 2016, 47(1): 220-223.
      [9]ZHANG Feng, LIU Xuesheng, DUAN Huachao. Optimization of Support Parameters of Roadway With Soft Roof in Shallow Seam[J]. Safety in Coal Mines, 2014, 45(4): 180-182,186.
      [10]SU Cai-quan. Optimization Design of Supporting Parameter for Extreme Soft Surrounding Rock Under the Influence of Mining[J]. Safety in Coal Mines, 2012, 43(12): 197-200.
    • Cited by

      Periodical cited type(3)

      1. 王永敬,王坤,陈洋,师吉林,秦乐静. 低变质煤CO来源及防控技术研究. 煤矿安全. 2024(01): 132-138 . 本站查看
      2. 葛俊岭,解树亮,赵滨,夏鸣泽,王刚. 浸水煤表面结构演化与自然发火指标实验研究. 山东科技大学学报(自然科学版). 2024(03): 21-30 .
      3. 代杰,王忠桥,曹军,韩建磊,邢占一. 煤泥浆基凝胶防灭火材料制备及阻燃性能研究. 煤. 2023(10): 29-33 .

      Other cited types(4)

    Catalog

      Article views (27) PDF downloads (0) Cited by(7)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return