• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Xiang, LYU Yulei, YIN Zhongkai, ZHANG Yin, HAN Gang, WANG Aiwen. Study on Mechanism of Strong Strata Pressure in Fully Mechanized Mining Face of Huge Thick Sandstone Formation[J]. Safety in Coal Mines, 2020, 51(3): 194-199.
Citation: ZHANG Xiang, LYU Yulei, YIN Zhongkai, ZHANG Yin, HAN Gang, WANG Aiwen. Study on Mechanism of Strong Strata Pressure in Fully Mechanized Mining Face of Huge Thick Sandstone Formation[J]. Safety in Coal Mines, 2020, 51(3): 194-199.

Study on Mechanism of Strong Strata Pressure in Fully Mechanized Mining Face of Huge Thick Sandstone Formation

More Information
  • Published Date: March 19, 2020
  • Based on the strong pressure of the returning airway in 31102 working face of Nalinhe No.2 well, the theoretical analysis and on-site measurement are used to study the mechanism of strong mine pressure in the fully mechanized mining face of the thick sandstone layer. The research shows that when the 31102 working face enters the double working face squares, the overburden structure of the stope is the standard load three zones structure; based on the double-sided stratum structure of 31102 working face, the mechanical model of the strike bearing pressure is established and the double is obtained. It is concluded that the working face of stage 31102 in double squares is 42.69 m to 215.67 m ahead to reach the stress condition of rock burst; the medium impact hazard range is 57.47 m to 137.02 m, the high stress transmitted by the range “DLZ” in the double squares phase 31102 along the empty roadway is the main reason for the strong occurrence of mine pressure. The strong control mechanism of the 31102 return airway is: to determine the reasonable pressure relief parameters, to release the coal volumetric energy through the large diameter borehole, and minimize the damage to the surrounding rock structure to ensure that the surrounding rock of the roadway is in “low stress-low disturbance” status.
  • [1]
    齐庆新,李晓璐,赵善坤.煤矿冲击地压应力控制理论与实践[J].煤炭科学技术,2013,41(6):1-5.
    [2]
    蓝航,齐庆新,潘俊锋,等.我国煤矿冲击地压特点及防治技术分析[J].煤炭科学技术,2011,39(1):11.
    [3]
    蒋金泉,张培鹏,秦广鹏,等.一侧采空高位硬厚关键层破断规律与微震能量分布[J].采矿与安全工程学报,2015,32(4):523-529.
    [4]
    谭云亮,张明,徐强,等.坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术,2019,47(1):166-172.
    [5]
    姜福兴,刘懿,张益超,等.采场覆岩的“载荷三带”结构模型及其在防冲领域的应用[J].岩石力学与工程学报,2016,35(12):2398-2408.
    [6]
    齐庆新,李一哲,赵善坤,等.矿井群冲击地压发生机理与控制技术探讨[J].煤炭学报,2019,44(1):141.
    [7]
    潘一山,肖永惠,李忠华,等.冲击地压矿井巷道支护理论研究及应用[J].煤炭学报,2014,39(2):222.
    [8]
    窦林名,贺虎.煤矿覆岩空间结构OX-F-T演化规律研究[J].岩石力学与工程学报,2012,31(3):453.
    [9]
    魏全德,姜福兴,姚顺利,等.特厚煤层下山煤柱区巷道冲击危险性实时监测预警研究[J].采矿与安全工程学报,2015,32(4):530-536.
    [10]
    姜福兴,魏全德,王存文,等.巨厚砾岩与逆冲断层控制型特厚煤层冲击地压机理分析[J].煤炭学报,2014,39(7):1191-1196.
    [11]
    王存文,姜福兴,孙庆国,等.基于覆岩空间结构理论的冲击地压预测技术及应用[J].煤炭学报,2009,34(2):150-155.
    [12]
    姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报,2006(1):30-33.
    [13]
    姜福兴,杨淑华.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报,2003(4):357-360.
    [14]
    姜福兴,王存文,叶根喜,等.采煤工作面冲击地压发生的可能性评价方法研究[C]//2008全国冲击地压研讨会论文集.徐州:中国矿业大学出版社,2008:91-96.
    [15]
    姜福兴,史先锋,王存文,等.高应力区分层开采冲击地压事故发生机理研究[J].岩土工程学报,2015,37(6):1123-1131.
    [16]
    史先锋,姜福兴,朱海洲,等.特厚煤层分层工作面冲击地压事故后复产方案研究与实践[J].煤炭学报,2015,40(S1):19-26.
    [17]
    李亘,姜福兴.当量采深在冲击地压预评价领域的应用[J].煤矿安全,2015,46(9):208-210.
    [18]
    韩刚,李旭东,曲晓成,等.采场覆岩空间破裂与采动应力场分布关联性研究[J].煤炭科学技术,2019,47(2):53-58.
  • Related Articles

    [1]FANG Lue, ZHU Sitao, LI Shidong, WANG Fangfang, KONG Zhen, ZHOU Guangfei, YUAN Tengfei, ZHONG Leilei, PENG Guanglin. Creep instability rock burst mechanism of high-stress isolated coal immersed in water[J]. Safety in Coal Mines, 2024, 55(7): 110-117. DOI: 10.13347/j.cnki.mkaq.20230989
    [2]LYU Pengfei, LIU Tianqi, BAO Xinyang, LI Xuping. Numerical Analysis of Dynamic Instability Response Characteristics in Roadways Triggered by Shock Wave[J]. Safety in Coal Mines, 2020, 51(9): 240-244.
    [3]WANG Donghao, LI Wen, ZHANG Bin. Present Situation and Prospect of Research on Prevention and Control Technologies of Coal Mine Goaf Instability Disaster[J]. Safety in Coal Mines, 2020, 51(3): 188-193.
    [4]SONG Yanfang, PAN Yishan, LI Zhonghua, YIN Wanlei. Creep Instability of Isolated Coal Pillar Under Rock Burst[J]. Safety in Coal Mines, 2018, 49(5): 47-50.
    [5]ZHANG Manhua, ZHANG Zhengxin. Instability Mechanism and Supporting Technology of Deep High Stress Semi-coal Rock Roadway[J]. Safety in Coal Mines, 2018, 49(2): 206-210.
    [6]ZHANG Hui, CHENG Lixing. Coal Wall Instability Characteristics and Instability Region Predict of Large Mining Height Working Face[J]. Safety in Coal Mines, 2016, 47(5): 205-208.
    [7]XING Luyi, YANG Rui, SONG Zongwu. Mechanism and Control of Deep Roadway Surrounding Rock Deformation and Instability[J]. Safety in Coal Mines, 2016, 47(4): 226-228.
    [8]LI Zhimin, LIU Zhenjiang. Overlying Strata Structure Evolution Feature and Its Influence on Rock-burst in Uphill and Downhill Protection Coal Pillar Area of Deep Mine[J]. Safety in Coal Mines, 2015, 46(6): 183-186.
    [9]YANG Lei, LI Yi-jing, ZHANG Xu. Delayed Effect Analysis of Gas Extraction Boreholes Instability in Coal Seam[J]. Safety in Coal Mines, 2013, 44(9): 178-181.
    [10]WANG Bao-xian. Cause Analysis of Water and Sand Inrush at the First Working Face of Improving Mining Upper Limit in Renlou Coal Mine[J]. Safety in Coal Mines, 2013, 44(6): 189-192.

Catalog

    Article views (97) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return