• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Donghao, LI Wen, ZHANG Bin. Present Situation and Prospect of Research on Prevention and Control Technologies of Coal Mine Goaf Instability Disaster[J]. Safety in Coal Mines, 2020, 51(3): 188-193.
Citation: WANG Donghao, LI Wen, ZHANG Bin. Present Situation and Prospect of Research on Prevention and Control Technologies of Coal Mine Goaf Instability Disaster[J]. Safety in Coal Mines, 2020, 51(3): 188-193.

Present Situation and Prospect of Research on Prevention and Control Technologies of Coal Mine Goaf Instability Disaster

More Information
  • Published Date: March 19, 2020
  • Aiming at the instability disaster of coal mine goaf, based on the disaster type and hazard analysis, the present situation and progress of the research on the prevention and control technology of the mine goaf instability hazards in China are systematically summarized from the three aspects of the mechanism, evaluation method and control technology of the mine goaf instability hazards, and the main problems are discussed. The research shows that the main types of disasters induced by goaf instability are ground collapse and secondary disasters induced by it, mine earthquake disasters induced by sudden instability in large area of goaf, equipment damage caused by underground (roof or overburden, air wave, etc.) and hazards of operators. The research on the theory of complex disaster in goaf instability, such as the chain mechanism of goaf instability, the control theory and method of chain breaking and disaster reduction, and the monitoring and early warning technology during the disaster, will be the focus of future research.
  • [1]
    李文,李健.浅埋煤层房采采空区隐患分析与治理技术[J].煤矿安全,2014,45(1):64-66.
    [2]
    李文,李健.资源整合煤矿采空区灾害特点及防治对策[J].煤矿安全,2015,46(7):179-181.
    [3]
    钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [4]
    钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [5]
    许家林,朱卫兵,王晓振.浅埋煤层覆岩关键层结构分类[J].煤炭学报,2009,34(7):885-870.
    [6]
    缪协兴,陈荣华,浦海,等.采动覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [7]
    蔡美峰,李玉民,来兴平,等.大柳塔煤矿采空区动力失稳机理[J].辽宁工程技术大学学报(自然科学版),2009,28(1):1-4.
    [8]
    杨真,童兵,黄成成,等.近距离房柱采空区下长壁采场顶板垮落特征研究[J].采矿与安全工程学报,2012,29(2):157-161.
    [9]
    王金安,尚新春,刘红,等.采空区坚硬顶板破断机理与灾变塌陷研究[J].煤炭学报,2008,33(8):850-855.
    [10]
    秦四清,王思敬.煤柱-顶板系统协同作用的脆性失稳与非线性演化机制[J].工程地质学报,2005, 13(4):437-446.
    [11]
    贺广零,黎都春,霍志文,等.采空区煤柱-顶板系统失稳的力学分析[J].煤炭学报,2007,32(9):897-901.
    [12]
    孙琦,卫星,张淑坤.采空区顶板-矿柱体系蠕变损伤力学模型研究[J].安全与环境学报,2015,15(3):120-123.
    [13]
    赵延林,吴启红,王卫军.基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J].岩石力学与工程学报,2010,29(7):1424-1434.
    [14]
    胡炳南.条带开采煤柱稳定性分析[J].煤炭学报,1995,20(2):205-210.
    [15]
    谢和平,段发兵,周宏伟,等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37-41.
    [16]
    崔希民,缪协兴.条带煤柱中的应力分析与沉陷曲线形态研究[J].中国矿业大学学报,2000,29(4):392-394.
    [17]
    高纬.倾斜煤柱稳定性的弹塑性分析[J].力学与实践,2001,23(2):23-26.
    [18]
    吴立新,王金庄.煤柱屈服带宽度计算及其影响因素分析[J].煤炭学报,1995,20(6):625-631.
    [19]
    王方田.浅埋房式采空区下近距离煤层长壁开采覆岩运动规律及控制[D].徐州:中国矿业大学,2012.
    [20]
    郭增建,秦保燕.灾害物理学简论[J].灾害学,1987,2(6):25-33.
    [21]
    李文.煤矿采空区失稳灾害演化链式效应及控制(Chain effect and control of coal mine goafs instability disaster evolution) [C]//第三届煤炭科技创新高峰论坛——煤炭绿色开发与清洁利用技术与装备.北京:中国煤炭工业协会,2016:210-215.
    [22]
    王欣,付建新,宋卫东.采空区系统失稳灾变链式效应机理及特性研究[J].工业安全与环保,2017,43(9):40-43.
    [23]
    李天祺,赵振东.能源供应系统地震灾害链研究[J].自然灾害学报,2006,15(5):148-153.
    [24]
    李克钢,侯克鹏.孕源断链在采空区失稳灾害控制技术中的应用初探[C]//2012中国矿山安全技术装备与管理大会论文集.北京:中国有色金属学会,2012.
    [25]
    刘磊,施龙青,孙红华,等.矿山灾害链及其断链减灾模式分析[J].煤田地质与勘探,2013,41(5):40-44.
    [26]
    刘文方,李红梅.基于熵权理论的斜坡地质灾害链综合评判[J].灾害学,2014,29(1):8-11.
    [27]
    郭付三,周春梅,杜娟.基于灾害链效应的小秦岭乱石沟矿山泥石流风险评价[J].安全与环境工程,2015, 22(2):25-31.
    [28]
    伍永田,张旭生,李晓芸,等.地震作用对采空区塌陷的UDEC模拟[J].矿业工程,2007,5(6):19-22.
    [29]
    Wael Abdellah, G D Raju,Hani S Mitri, et al. Stability of underground mine development intersections during the life of a mine plan[J]. International Journal of Rock Mecharics and Mining Sciences, 2014, 72: 173.
    [30]
    鲍凤其.房柱式开采煤柱稳定性数值模拟研究[J].煤矿开采,2008,13(6):17-19.
    [31]
    徐必根,王春来,唐绍辉.大尺度采空区岩体工程地质调查与评价研究[J].矿业研究与开发,2008,28(1):57-59.
    [32]
    李文.房采采空区失稳危险性评价[J].中国安全科学学报,2011,21(3):95-100.
    [33]
    刘如铁,李文,李杰.煤矿大面积采空区失稳危险源分级[J].煤矿安全,2012,43(5):143-146.
    [34]
    贺安民.神东矿区旺采采空区失稳危险分级方法研究[J].煤矿开采,2013,18(1):70-72.
    [35]
    王新民,段瑜,彭欣,等.采空区灾害危险度的模糊综合评价[J].矿业研究与开发,2005,25(2):83-85.
    [36]
    郭文兵,邓喀中,邹友峰.走向条带煤柱破坏失稳的尖点突变模型[J].岩石力学与工程学报,2004,23(12):1996-2000.
    [37]
    朱静.基于模糊综合评价法的煤矿安全评价[J].煤矿安全,2014,45(4):226-228.
    [38]
    邓红卫,贾明.基于UAHP的采空区稳定性模糊综合评价[J].中国安全科学学报,2012,22(3):24-29.
    [39]
    唐胜利,唐浩,郭辉.基于BP神经网络的空洞型采空区稳定性评价研究[J].西安科技大学学报,2012,32(2):234-238.
    [40]
    凌标灿,彭苏萍,张慎河.菜场顶板稳定性动态工程分类[J].岩石力学与工程学报,2003,22(9):1474-1477.
    [41]
    Rajendra Singhand, T N Singh. Ivestigation into the behaviour of support system and roof during sublevel caving of a thick caol seam[J]. Goteachnical and Geological Engineering, 1999, 17: 21-35.
    [42]
    童立元,刘松玉,邱钰,等.高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报,2004, 23(7):1198-1202.
    [43]
    郭广礼.老采空区上方建筑地基变形机理及其控制[M].徐州:中国矿业大学出版社,2001.
    [44]
    魏锦平,闫志义.综放采场坚硬顶板控制实践[J].矿山压力与顶板管理,2000(2):71-74.
    [45]
    张俊英,王翰峰,张彬,等.煤矿采空区勘查与安全隐患综合治理技术[J].煤炭科学技术,2013,41(10):76.
  • Related Articles

    [1]GAO Xinyu, LIU Jian, ZHANG Chao, ZHANG Chi. Experimental Study on Permeability Improvement of Deep Hole Pre-splitting Cumulative Blasting in Low Permeability Coal Seam[J]. Safety in Coal Mines, 2019, 50(4): 23-26,31.
    [2]ZHANG Bailin, LI Haojun, ZHANG Xinghua. Parameters Optimization for Hole Layout of Liquid CO2 Phase-change Fracturing Technology Based on COMSOL Numerical Simulation[J]. Safety in Coal Mines, 2018, 49(9): 207-210.
    [3]SUN Guowen, LUO Jiayuan, LUO Binyu. Numerical Simulation on Coupling Relationship Between Permeability and Stress of Mining-induced Strata[J]. Safety in Coal Mines, 2018, 49(1): 214-217.
    [4]CHEN Bin, ZHAN Qinjian. Fracturing and Permeability Increasing Technology for Radial Well in Rapid Unconvering Coal of Shaft[J]. Safety in Coal Mines, 2017, 48(11): 76-79.
    [5]JIAO Xianjun, CAI Feng. Study on Intensified Permeability Improving Technology by Hydraulic Fracturing in Deep and Low Permeability Coal Seam[J]. Safety in Coal Mines, 2017, 48(10): 76-79.
    [6]LIANG Wenxu. Experimental Study on Point Hydraulic Fracturing in Low Permeability Coal Seam[J]. Safety in Coal Mines, 2017, 48(6): 44-47,51.
    [7]WANG Kaide, NING Hongjin, WAN Chunxin, QIU Han, HOU Xingpeng, WANG Qingchao. Numerical Simulation on Distribution Laws of Water Injection Pressure and Permeability of Coal Seam[J]. Safety in Coal Mines, 2016, 47(5): 181-184.
    [8]LI Baofa, LIANG Wenxu, HU Gaojian, LI Jiangtao. Application of Hydraulic Fracturing Permeability Improvement Technology in Xing'an Coal Mine[J]. Safety in Coal Mines, 2015, 46(7): 159-162.
    [9]LI Shou-guo. Numerical Simulation of Coal Fracture Caused by High-pressure Air Blasting[J]. Safety in Coal Mines, 2013, 44(12): 163-165.
    [10]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.

Catalog

    Article views (99) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return