XIE Xiaoping, LIU Xiaoning, LIANG Minfu. Study on Overall Pressure Relief Mining Without Pillar in Protective Layer Through UDEC Numerical Simulation Experiment[J]. Safety in Coal Mines, 2020, 51(2): 208-212.
    Citation: XIE Xiaoping, LIU Xiaoning, LIANG Minfu. Study on Overall Pressure Relief Mining Without Pillar in Protective Layer Through UDEC Numerical Simulation Experiment[J]. Safety in Coal Mines, 2020, 51(2): 208-212.

    Study on Overall Pressure Relief Mining Without Pillar in Protective Layer Through UDEC Numerical Simulation Experiment

    More Information
    • Published Date: February 19, 2020
    • In view of the problem that the low permeability and high outburst coal seam group does not have the mining condition for the protection layer of conventional coal seam (coal thickness ≥0.8 m) and the ability to eliminate the blind area of pressure relief in the protected layer under the residual coal pillar, the overall pressure relief mining technology without coal pillar in the semi-coal rock protective layer of the extremely thin coal seam was proposed. Based on the geological conditions of Shaqu Coal Mine, it’s concluded by the use of UDEC numerical simulation analysis that with the increase of the width of the coal pillar of the protective layer, the width of the unloading blind zone of the protected coal seam roughly conforms to the linear growth law of the fitted linear equation y=17.09x-10.05, and the fitting degree R2=0.896 8. When there is no pillar mining, vertical stress concentration does not occur in the protected layer below the original pillar position, that is, the blind area of unloading pressure is eliminated.
    • [1]
      刘宜平,董昌伟,郭标.祁东矿切顶卸压无煤柱开采矿压规律及围岩控制[J].煤矿安全,2019,50(1):165.
      [2]
      施峰,王宏图,舒才.间距对上保护层开采保护效果影响的相似模拟实验研究[J].中国安全生产科学技术,2017,13(12):138-144.
      [3]
      杨贺,邱黎明,汪皓,等.远距离下保护层开采上覆煤岩层采动应力场数值模拟研究[J].工矿自动化,2017,43(6):37-41.
      [4]
      撒占友,李磊,卢守青,等.“三软”煤层上保护层开采底板围岩透气性演化相似试验研究[J].煤矿安全,2017,48(7):25-28.
      [5]
      邓玉华.近水平上保护层开采覆岩破坏规律数值模拟研究[J].煤炭工程,2017,49(5):87-90.
      [6]
      李江涛.煤层群开采保护层厚度设计优化数值模拟研究[J].能源与环保,2019,41(8):154-157.
      [7]
      贺爱萍,付华,霍丙杰,等.保护层开采被保护层裂隙分布与增透效果相似材料模拟[J].安全与环境学报,2019,19(4):1174-1181.
      [8]
      齐峰.保护层区段煤柱宽度对被保护层卸压效果的影响[J].矿业安全与环保,2016,43(4):10-13.
      [9]
      康建宁.基于合理采掘部署的突出煤层群开采区域防突措施[J].矿业安全与环保,2017,44(3):43-48.
      [10]
      霍丙杰,范张磊,路洋波,等.保护层开采被保护层体积应变与渗透特性相似模拟研究[J].煤炭科学技术,2018,46(7):19-25.
      [11]
      孙国文,罗甲渊,罗斌玉.采动岩层渗透率与应力耦合关系数值模拟研究[J].煤矿安全,2018,49(1):212-217.
      [12]
      文虎,樊世星,卢平,等.煤层群上保护层开采保护效果现场考察[J].煤矿安全,2018,49(3):155-159.
      [13]
      黄光利,唐小洪,王宏图.突出煤层群俯伪斜上保护层开采的保护范围研究[J].煤矿安全,2018,49(8):149-156.
      [14]
      谢小平,刘衍利,艾德春,等.薄煤层切顶卸压无煤柱沿空留巷技术研究[J].煤炭技术,2017,36(5):36-38.
      [15]
      谢小平.高瓦斯煤层群薄煤层上保护层开采卸压机理及应用研究[D].徐州:中国矿业大学,2014.
      [16]
      钟耀华,谢文兵,谢小平,等.薄煤层保护层无煤柱煤与瓦斯共采技术研究[J].煤炭工程,2014,46(2):9.
      [17]
      刘建高,谢小平,刘宗柱.高瓦斯煤层群薄煤层保护层开采卸压效果分析[J].煤矿安全,2013,44(10):192-195.
      [18]
      谢小平,方新秋,梁敏富.顶板千米定向钻孔瓦斯抽采技术[J].煤矿安全,2013,44(7):60-62.
    • Related Articles

      [1]LIU Haidong, LIU Yanchi, LIN Baiquan, LIU Ting. “Three zones” rule of spontaneous combustion in goaf under overburden separation grout filling[J]. Safety in Coal Mines, 2024, 55(7): 68-77. DOI: 10.13347/j.cnki.mkaq.20231244
      [2]CAO Xiwu, TIAN Maolin, XIAO Hongtian, HAN Lijun. Study on diffusion range and reinforcement characteristics of coupling grouting slurry in deep roadway[J]. Safety in Coal Mines, 2023, 54(11): 116-123. DOI: 10.13347/j.cnki.mkaq.2023.11.002
      [3]LI Lin, GU Wei, SONG Gang. Combined grouting and reinforcement technology for deep and shallow holes in soft and broken coal roadway[J]. Safety in Coal Mines, 2021, 52(9): 108-115,121.
      [4]XU Changyu, HAN Lijun, TIAN Maolin, WANG Yajie. Coupled Grouting Reinforcement Mechanism and Displacement Back Analysis of Mechanical Parameters of Surrounding Rock[J]. Safety in Coal Mines, 2020, 51(11): 155-160.
      [5]LIU Chao, ZHAO Yajie, YANG Mingyang. Numerical Simulation Analysis of Rock Mass Splitting Characteristics Under Different Locations Between Grouting Hole and Surrounding Rock Fractures[J]. Safety in Coal Mines, 2018, 49(10): 203-206,212.
      [6]MA Ziyang, WANG Tongxu, LIU Canhua, QU Kongdian. Numerical Simulation of Dynamic Grouting for Deep Soft Rock Roadway and Its Application[J]. Safety in Coal Mines, 2018, 49(8): 239-242.
      [7]ZHAO Bin, WANG Meng, TAO Guangmei, ZHANG Jiangli, SI Chao. Effect of Arrangement Forms on Advance Pre-grouting in Working Face[J]. Safety in Coal Mines, 2017, 48(12): 207-210.
      [8]FU Yilong, KANG Tianhe. Numerical Simulation of Reinforcement Method and Its Effect for High Stress Broken Chamber[J]. Safety in Coal Mines, 2017, 48(2): 192-195.
      [9]LIU Na, HUANG Zhongfeng, ZHENG Xigui. Numerical Analysis on Hollow Grouting Anchor Cable Based on FLAC3D[J]. Safety in Coal Mines, 2016, 47(6): 194-197,201.
      [10]CHEN Chunhui, SONG Xuanmin. Comprehensive Control of Roadway in Broken Roof Strata Based on Depth Hole and Shallow Hole Grouting Technology[J]. Safety in Coal Mines, 2016, 47(4): 161-164.

    Catalog

      Article views (74) PDF downloads (0) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return