• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
GUAN Qingsheng, YANG Bo, WANG Dechao, LI Weiteng, MEI Yuchun, YANG Ning, MA Haiyao. Study on Fine Numerical Simulation of Arch-locking Bolt in Soft Rock Roadway[J]. Safety in Coal Mines, 2020, 51(2): 51-57,69.
Citation: GUAN Qingsheng, YANG Bo, WANG Dechao, LI Weiteng, MEI Yuchun, YANG Ning, MA Haiyao. Study on Fine Numerical Simulation of Arch-locking Bolt in Soft Rock Roadway[J]. Safety in Coal Mines, 2020, 51(2): 51-57,69.

Study on Fine Numerical Simulation of Arch-locking Bolt in Soft Rock Roadway

More Information
  • Published Date: February 19, 2020
  • Locking bolts are frequently used to control the failure of the supporting arch in soft rock roadway support system, but the design basis of the locking bolts parameters is not clear. In order to investigate the roadway support effect influenced by the position and length of the arch-locking bolt, based on a typical soft rock roadway engineering case, numerical simulation experiments were carried out through an improved numerical simulation approach. The results indicate that: roadway supported without locking bolts deformed seriously, and the arch legs’ inward bending deformation and arch-rock separation were the breakthrough of the overall failure of the support system; the arch-locking bolts suppressed the arch legs inward bending deformation and prevented arch-rock separation, which ensured the integrity of the support system, and the final supporting effect was improved significantly; the deformation value and plastic zone volume both first decrease and then increase with the increasing of the locking bolt height H, and the impact was significant; the support effect tends to be better but not obvious with the increasing the arch-locking bolt length L. Based on the research conclusions, the optimized parameters of the lock arch bolt (H=1.0 m, L=3.0 m) were determined, and the field practice showed the optimization scheme works well.
  • [1]
    康红普,范明建,高富强,等.超千米深井巷道围岩变形特征与支护技术[J].岩石力学与工程学报,2015, 34(11):2227-2241.
    [2]
    蓝航,陈东科,毛德兵.我国煤矿深部开采现状及灾害防治分析[J].煤炭科学技术,2016,44(1):39-46.
    [3]
    高延法,王波,王军,等.深井软岩巷道钢管混凝土支护结构性能试验及应用[J].岩石力学与工程学报, 2010,29(S1):2604-2609.
    [4]
    李为腾,王乾,杨宁,等.钢管混凝土拱架在巷道支护中的发展与现状[J].土木工程学报,2016,49(11): 97-114.
    [5]
    谢文兵,荆升国,王涛,等.U型钢支架结构稳定性及其控制技术[J].岩石力学与工程学报,2010,29(S2):3743-3748.
    [6]
    王其洲,谢文兵,荆升国,等.动压影响巷道U型钢支架-锚索协同支护机理及其承载规律[J].煤炭学报,2015,40(2):301-307.
    [7]
    荆升国,王其洲,陈杰.深部“三软”煤巷棚-索强化控制机理研究[J].采矿与安全工程学报,2014,31(6):938-944.
    [8]
    荆升国.高应力破碎软岩巷道棚—索协同支护围岩控制机理研究[D].徐州:中国矿业大学,2009.
    [9]
    罗彦斌,陈建勋.软弱围岩隧道锁脚锚杆受力特性及其力学计算模型[J].岩土工程学报,2013,35(8):1519-1525.
    [10]
    陈丽俊,张运良,马震岳,等.软岩隧洞锁脚锚杆–钢拱架联合承载分析[J].岩石力学与工程学报,2015,34(1):129-138.
    [11]
    李为腾,李术才,玄超,等.高应力软岩巷道支护失效机制及控制研究[J].岩石力学与工程学报,2015,34(9):1837-1847.
    [12]
    Li Wei-teng, Yang Ning, Li Ting-chun, et al. A new approach to simulate the supporting arch in a tunnel based on improvement of the beam element in FLAC3D[J]. Journal of Zhejiang University-SCIENCE A(Applied Physics & Engineering), 2017, 18(3): 179.
    [13]
    李为腾,杨宁,李廷春,等.FLAC3D中锚杆破断失效的实现及应用[J].岩石力学与工程学报,2016,35(4):753-767.
    [14]
    杨宁,李为腾,玄超,等.FLAC3D可破断锚杆单元完善及深部煤巷应用[J].采矿与安全工程学报,2017,34(2):251-258.
    [15]
    Li Weiteng, Yang Ning, Yang Bo, et al. An improved numerical simulation approach for arch-bolt supported tunnels with large deformation[J]. Tunnelling and Underground Space Technology, 2018, 77:1-12.
  • Related Articles

    [1]WEI Qiming, ZHAO Baofeng, ZHANG Zeyuan. Exploration of hydrogeological conditions of Baotashan sandstone aquifer based on dewatering test[J]. Safety in Coal Mines, 2024, 55(9): 173-179. DOI: 10.13347/j.cnki.mkaq.20231649
    [2]YE Lijin, XU Jinpeng, LIU Tongxue, LU Cunjin. Basic types of mine water disasters and classification of dynamic evolution types[J]. Safety in Coal Mines, 2022, 53(11): 207-211.
    [3]GAO Yingui, KONG Wanjun, AN Shikai, XUE Xianming, ZHENG Liugen, CHANG Chenglin, JIANG Chunlu, GUO Wei, LEI Feng, WANG Gang, YANG Chengchao. Experimental project and prevention and control technology of Ordovician limestone water disaster in Tangjiahui Coal Mine[J]. Safety in Coal Mines, 2022, 53(3): 91-95,103.
    [4]XU Weize. Design of Hydrological Telemetry System Based on ADuC845[J]. Safety in Coal Mines, 2019, 50(10): 132-135.
    [5]LI Hongjie, MA Jun, JIANG Peng, LI Ling, HAO Zhipeng. Karst Hydrogeological Characteristics and Prevention and Control Technology for Water Damage in Zhungar Coalfield[J]. Safety in Coal Mines, 2018, 49(9): 246-251.
    [6]JIN Yongfei, LI Shanshan, LI Haitao. Occurrence Mechanism of Water Disaster in Baoding Mining Area[J]. Safety in Coal Mines, 2018, 49(3): 175-177,181.
    [7]LIANG Qinghua. Water Disaster Exploration and Control in Coal Mines of South China[J]. Safety in Coal Mines, 2017, 48(2): 171-173.
    [8]LI Chong. Control Techniques for Ordovician Limestone Karst Water Disaster in Deep Mines[J]. Safety in Coal Mines, 2016, 47(5): 101-103.
    [9]HUANG Chongxiao, ZHANG Yaohui. Water Disaster Treatment Technology of Serious Water-bearing Layer Based on Floor River-closure Theory[J]. Safety in Coal Mines, 2015, 46(9): 90-92,95.
    [10]SHAO Hongqi. Integrated and Stereo Detection Technology of Roof Water Disaster at S1210 Working Face in Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2014, 45(4): 81-83,87.
  • Cited by

    Periodical cited type(6)

    1. 刘成勇,王翰秋,刘治成,吴继飞,赵萌烨,张新福,刘雪峰,张进鹏. 应力扰动路径对煤岩力学性能的影响试验研究. 煤矿安全. 2024(05): 28-34 . 本站查看
    2. 彭相愿,高富强. 加载角度对煤声发射特征的影响试验研究. 煤矿安全. 2023(02): 121-127 . 本站查看
    3. 任昂岭,李加辉,张亚平,卜祥旭,殷正. 煤岩受热及损伤过程的声发射特性研究. 陕西煤炭. 2023(02): 11-15 .
    4. 朱昌星,安烨明,李伟东. 单轴压缩下透明类岩石损伤演化特征研究. 实验力学. 2022(05): 701-710 .
    5. 黄晓昇,张超,程成,赵亚婕. 含不同预制裂隙相似试样的注浆诱发劈裂裂隙扩展规律研究. 煤矿安全. 2021(03): 43-48 . 本站查看
    6. 高硕,雷瑞德,徐新杭,许石青. 煤岩力学特性降解及声发射信号多参量特征试验研究. 煤矿安全. 2021(06): 17-23 . 本站查看

    Other cited types(10)

Catalog

    Article views (94) PDF downloads (0) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return