• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Zizhu. Change Laws of Coal Permeability with Acidification Time, Pressure and Temperature[J]. Safety in Coal Mines, 2019, 50(12): 36-40.
Citation: LI Zizhu. Change Laws of Coal Permeability with Acidification Time, Pressure and Temperature[J]. Safety in Coal Mines, 2019, 50(12): 36-40.

Change Laws of Coal Permeability with Acidification Time, Pressure and Temperature

More Information
  • Published Date: December 19, 2019
  • Through the permeability test of three different coal samples before and after acidification, the change trend of permeability of each coal sample is analyzed, and then the permeability under different pressures and temperature conditions is tested under different acidification time, and the laws of permeability changing with acidification time, pressure and temperature are obtained. The results show that the permeability of 13# bituminous coal and 2# lean coal is better than that of 3# anthracite, that is, the acidification effect of medium and low rank coal is better than that of high rank coal; the influence of confining pressure on permeability is more obvious, with the increase of confining pressure, the permeability shows a decreasing trend; in the early stage of temperature increase, with the increase of temperature, the permeability of different coal samples decreases. In the intermediate stage of acidification, the permeability decreases gradually; in the later stage of temperature increase, the permeability decreases with the increase of temperature, but the change trend is no longer particularly obvious, and gradually enters a stable stage.
  • [1]
    刘炎杰.低渗透煤储层酸化改造实验研究[D].焦作:河南理工大学,2016.
    [2]
    彭春洋,陈健,原晓珠,等.煤层气储层渗透性影响因素分析[J].煤,2011,20(5):38-41.
    [3]
    张迎新,杨杰,王鹏飞,等.酸化工艺的煤层增透新技术[J].黑龙江科技大学学报,2014,24(2):177-181.
    [4]
    贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报,2005,24(12):2420-2427.
    [5]
    郝振良.热应力作用下的有效应力对多孔介质渗透系数的影响[J].水动力学研究与进展,2003,18(6):792-796.
    [6]
    彭博,李雄,饶孜,胡勇.新维矿区围岩瓦斯渗透率演化规律研究[J].中国煤炭,2019(5):59-63.
    [7]
    李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,38(4):523-527.
    [8]
    曹树刚,郭平,李勇,等.瓦斯压力对原煤渗透特性的影响[J].煤炭学报,2010,35(4):595-599.
    [9]
    李明敏.褐煤热解渗透及其微观结构变化的研究[D].太原:太原理工大学,2012.
  • Related Articles

    [1]WANG Yanbin. Development of data acquisition instrument for coal and gas outburst based on wireless communication[J]. Safety in Coal Mines, 2022, 53(12): 101-106.
    [2]Research progress on intelligent monitoring and early warning technology of fire risk in coal mine belt conveyor transportation[J]. Safety in Coal Mines, 2022, 53(9): 47-54.
    [3]HUANG Hesong, WANG Jiahao, DAI Chuanhao, TIAN Chengjin, WANG Zhen. An intrinsically safe low-power data acquisition system for mine based on XBee3[J]. Safety in Coal Mines, 2021, 52(6): 143-148.
    [4]SHU Lichun. Cloud edge integrated coal mine safety production risk monitoring and early warning platform based on big data[J]. Safety in Coal Mines, 2021, 52(5): 144-148.
    [5]ZHANG Xiantao. Android Bluetooth Data Acquisition for Directional Drilling of Coal Mine by Wired MWD[J]. Safety in Coal Mines, 2019, 50(8): 111-113.
    [6]YIN Peng, XIAO Kaitai, XIAO Changliang, ZENG Zhi. Data Acquisition Method of Coal Mine Safety Monitoring System[J]. Safety in Coal Mines, 2019, 50(8): 104-106.
    [7]ZHANG Weijie. Implementation of Data Acquisition Efficiency Optimization Based on Multi-threading[J]. Safety in Coal Mines, 2019, 50(5): 113-115.
    [8]ZHANG Qiang. Wireless Data Acquisition Instrument for Roof Pressure Based on STM32[J]. Safety in Coal Mines, 2018, 49(6): 95-98.
    [9]ZHOU Haikun. Design of Data Acquisition System for High Concurrent Coal Mine Safety Monitoring[J]. Safety in Coal Mines, 2018, 49(6): 85-87,91.
    [10]BI Chang-hu, ZENG Wei, JIN Shu-jun, LI Bin-hu. The Application of FPGA in Mine-used Data Acquisition System[J]. Safety in Coal Mines, 2012, 43(9): 95-97.
  • Cited by

    Periodical cited type(14)

    1. 夏利玲,孙翠玲,张慧,黄春香. 基于CAN和REST物联网技术的智能矿山安全检测系统研发. 金属矿山. 2024(03): 215-220 .
    2. 戚建刚. 智慧应急法制模式之初探. 当代法学. 2024(03): 43-54 .
    3. 于永政,陈虹燕,张宝林,王浩. 矿山安全“再监督”监管平台设计与应用研究. 工业安全与环保. 2024(07): 79-82+89 .
    4. 范海波. 基于卫星遥感及GIS空天地一体化智慧矿山技术研究及应用. 世界有色金属. 2024(12): 55-57 .
    5. 王竑达,司书国,王淼,张博文,于倩倩. 矿山安全风险智能监测预警系统研究. 邮电设计技术. 2024(11): 25-30 .
    6. 成连华,张璇,郭慧敏,曹东强. 智能化背景下矿工风险感知水平对不安全行为产生的影响. 西安科技大学学报. 2024(06): 1041-1049 .
    7. 蔡强. 矿井环境智能化安全监测技术的研究现状. 内蒙古煤炭经济. 2023(01): 106-108 .
    8. 任艳. 煤矿智能监控系统在生产中的应用探究. 内蒙古煤炭经济. 2023(01): 172-174 .
    9. 毛乾宇. 基于卫星遥感及GIS空天地一体化智慧矿山技术研究及应用. 煤炭科技. 2023(03): 172-176 .
    10. 任志成,时宝,胡继峰,伦嘉云. 煤矿安全管理智能化建设及发展研究. 中国煤炭. 2023(07): 61-66 .
    11. 李雄锋,李刚,张枝伟,肖铸. 贵州煤矿“电子封条”智能监管平台建设与应用研究. 内蒙古煤炭经济. 2023(10): 115-117 .
    12. 任志成,孔德中,宋高峰,许鹏飞,李淋. 基于GRA和AHP的煤矿一般事故防控研究. 矿业研究与开发. 2023(12): 131-137 .
    13. 王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展. 工矿自动化. 2022(12): 1-15 .
    14. 于世勇. 煤矿用空压机智能群控节能控制系统的应用研究. 内蒙古煤炭经济. 2022(21): 21-23 .

    Other cited types(6)

Catalog

    Article views (105) PDF downloads (0) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return