• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Sidong, ZHU Zonglei, YANG Bin. Experimental Study on Evolution Law of Surrounding Rock Fissures in Roadway of Binhu Coal Mine[J]. Safety in Coal Mines, 2019, 50(10): 66-70.
Citation: WANG Sidong, ZHU Zonglei, YANG Bin. Experimental Study on Evolution Law of Surrounding Rock Fissures in Roadway of Binhu Coal Mine[J]. Safety in Coal Mines, 2019, 50(10): 66-70.

Experimental Study on Evolution Law of Surrounding Rock Fissures in Roadway of Binhu Coal Mine

More Information
  • Published Date: October 19, 2019
  • To explore the space-time evolution law of surrounding rock fissures in deep roadway during roadway excavation, the 16112 material roadway of Binhu Coal Mine was taken as the engineering background, and ZKXG30 borehole imager was used to carry out the drilling detection for roadway roof and sides coal and rock mass during the roadway excavation process. Through the quantitative analysis of the distribution characteristics of the coal-rock structure surface of the roof drilling, and the evaluation of the roof fracture at different locations, the spatio-temporal evolution law of surrounding rock fissures of 16# coal seam roadway is obtained. The results show that with the roadway excavation, the surrounding rock loose circle shows a development trend of early expansion and later contraction. After the excavation, the loose circle of the surrounding rock expands from 0 to 250 m, and the loose circle of 250 m expands to the maximum; the loose circle from 250 to 650 m gradually shrinks, and the loose circle of 650 m reaches stability.
  • [1]
    聂德新.岩体结构理论在中国的广泛、成功应用及进展[J].工程地质学报,2014,22(4):625-637.
    [2]
    尚彦军,李坤,王开洋.从施工地质灾害看岩体结构动态控制作用[J].岩石力学与工程学报,2013,32(6):1129-1136.
    [3]
    孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [4]
    靖洪文.深部巷道大松动圈位移分析及应用[M].徐州:中国矿业大学出版社,2001.
    [5]
    钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报,2008(6):1278.
    [6]
    韩立军,贺永年,蒋斌松,等.环向有效约束条件下破裂岩体承载变形特性分析[J].中国矿业大学学报,2009,38(1):14-19.
    [7]
    李学华,梁顺,姚强岭,等.泥岩顶板巷道围岩裂隙演化规律与冒顶机理分析[J].煤炭学报,2011,36(6):903-908.
    [8]
    黄旭,马念杰,白晓生,等.煤巷锚杆支护设计中的围岩地质力学评估方法[J].煤炭科学技术,2005,33(8):51-55.
    [9]
    周保生.综放回采巷道围岩稳定性分类及其支护对策的研究[D].武汉:中国科学院武汉岩土力学研究所,1999.
    [10]
    王果.回采巷道围岩稳定性分类及锚杆支护设计决策系统研制与应用[D].太原:太原理工大学,2006.
    [11]
    王川婴,葛修润,白世伟.数字式全景钻孔摄像系统研究[J].岩石力学与工程学报,2002,21(3):398.
    [12]
    康红普,司林坡,苏波.煤岩体钻孔结构观测方法及应用[J].煤炭学报,2010,35(12):1949-1956.
    [13]
    王川婴,LAWK Tim.钻孔摄像技术的发展与现状[J].岩石力学与工程学报,2005,24(19):3440.
    [14]
    王川婴,胡培良,孙卫春.基于钻孔摄像技术的岩体完整性评价方法[J].岩土力学,2010,31(4):1326.
    [15]
    查恩来.钻孔电视成像技术在工程探测中的应用研究[D].长春:吉林大学,2006.
    [16]
    葛修润,王川婴.数字式全景钻孔摄像技术与数字钻孔[J].地下空间,2001,21(4):254-261.
    [17]
    John H Williams, Carole D Johnson. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies[J]. Journal of Applied Eophysics, 2004, 55(1): 151-159.
  • Related Articles

    [1]WEI Qiming, ZHAO Baofeng, ZHANG Zeyuan. Exploration of hydrogeological conditions of Baotashan sandstone aquifer based on dewatering test[J]. Safety in Coal Mines, 2024, 55(9): 173-179. DOI: 10.13347/j.cnki.mkaq.20231649
    [2]YE Lijin, XU Jinpeng, LIU Tongxue, LU Cunjin. Basic types of mine water disasters and classification of dynamic evolution types[J]. Safety in Coal Mines, 2022, 53(11): 207-211.
    [3]GAO Yingui, KONG Wanjun, AN Shikai, XUE Xianming, ZHENG Liugen, CHANG Chenglin, JIANG Chunlu, GUO Wei, LEI Feng, WANG Gang, YANG Chengchao. Experimental project and prevention and control technology of Ordovician limestone water disaster in Tangjiahui Coal Mine[J]. Safety in Coal Mines, 2022, 53(3): 91-95,103.
    [4]XU Weize. Design of Hydrological Telemetry System Based on ADuC845[J]. Safety in Coal Mines, 2019, 50(10): 132-135.
    [5]LI Hongjie, MA Jun, JIANG Peng, LI Ling, HAO Zhipeng. Karst Hydrogeological Characteristics and Prevention and Control Technology for Water Damage in Zhungar Coalfield[J]. Safety in Coal Mines, 2018, 49(9): 246-251.
    [6]JIN Yongfei, LI Shanshan, LI Haitao. Occurrence Mechanism of Water Disaster in Baoding Mining Area[J]. Safety in Coal Mines, 2018, 49(3): 175-177,181.
    [7]LIANG Qinghua. Water Disaster Exploration and Control in Coal Mines of South China[J]. Safety in Coal Mines, 2017, 48(2): 171-173.
    [8]LI Chong. Control Techniques for Ordovician Limestone Karst Water Disaster in Deep Mines[J]. Safety in Coal Mines, 2016, 47(5): 101-103.
    [9]HUANG Chongxiao, ZHANG Yaohui. Water Disaster Treatment Technology of Serious Water-bearing Layer Based on Floor River-closure Theory[J]. Safety in Coal Mines, 2015, 46(9): 90-92,95.
    [10]SHAO Hongqi. Integrated and Stereo Detection Technology of Roof Water Disaster at S1210 Working Face in Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2014, 45(4): 81-83,87.
  • Cited by

    Periodical cited type(6)

    1. 刘成勇,王翰秋,刘治成,吴继飞,赵萌烨,张新福,刘雪峰,张进鹏. 应力扰动路径对煤岩力学性能的影响试验研究. 煤矿安全. 2024(05): 28-34 . 本站查看
    2. 彭相愿,高富强. 加载角度对煤声发射特征的影响试验研究. 煤矿安全. 2023(02): 121-127 . 本站查看
    3. 任昂岭,李加辉,张亚平,卜祥旭,殷正. 煤岩受热及损伤过程的声发射特性研究. 陕西煤炭. 2023(02): 11-15 .
    4. 朱昌星,安烨明,李伟东. 单轴压缩下透明类岩石损伤演化特征研究. 实验力学. 2022(05): 701-710 .
    5. 黄晓昇,张超,程成,赵亚婕. 含不同预制裂隙相似试样的注浆诱发劈裂裂隙扩展规律研究. 煤矿安全. 2021(03): 43-48 . 本站查看
    6. 高硕,雷瑞德,徐新杭,许石青. 煤岩力学特性降解及声发射信号多参量特征试验研究. 煤矿安全. 2021(06): 17-23 . 本站查看

    Other cited types(10)

Catalog

    Article views (98) PDF downloads (0) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return