Citation: | TAO Yun-qi. Coupling Modeling for THM of Coal Containing Methane[J]. Safety in Coal Mines, 2012, 43(2): 9-12. |
[1] |
Bear,J.,Corapcioglu,M.Y.A mathematical model forcomsolidation in athermoelastic aquifer due to hot waterinjection or pumping[J].Water Resource Res.1981(17):723-736.
|
[2] |
Lewis R W,Sukirman Y.Finite element modelling ofthree phase flow in deforming saturated oil reservoirs[J].Int J Num Anal Methods Geomech,1993(17):577-598.
|
[3] |
Lewis R W.Finite element modeling of two phase heatand fluid flow in deforming porou media[J].Trans PorousMedia,1989(4):319-334.
|
[4] |
贺玉龙,杨立中,杨吉义.非饱和岩体三场耦合控制方程[J].西南交通大学学报,2006,41(4):419-423.
|
[5] |
Gutierrez,M.and Makurat,A.Coupled HTM modell ingof cold water injection in fractured hydrocarbon reservoirs[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.1997,34(3-4):429.
|
[6] |
王自明.油藏热流固耦合模型研究及应用初探[D].成都:西南石油学院,2002.
|
[7] |
刘建军,梁冰,章梦涛.非等温条件下煤层瓦斯运移规律的研究[J].西安矿业学院学报,1999,19(4):302-308.
|
[8] |
梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报,1999,18(5):483-486.
|
[9] |
梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
|
[10] |
刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报,2002(2):91-94.
|
[11] |
陶云奇,许江,李树春,等.煤层瓦斯渗流特性研究进展[J].煤田地质与勘探,2009,37(2):1-5.
|
[12] |
陶云奇,许江,彭守建,等.含瓦斯煤孔隙率和有效应力影响因素试验研究[J].岩土力学,2010,31(11):3 417-3 422.
|
[13] |
陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟试验研究[D].重庆:重庆大学,2009.
|
[14] |
Bear,J.多孔介质流体力学[M].李竞生,陈崇希,译.北京:中国建筑工业出版社,1998.
|
[15] |
陶云奇,许江,程明俊,等.含瓦斯煤渗透率理论分析与试验研究[J].岩石力学与工程学报,2009(增2):3 363-3 370.
|
[16] |
孙培德.SUN模型及其应用[M].杭州:浙江大学出版社,2002.
|
[1] | WANG Man, JIANG Yongdong, WANG Yingwei, LI Xiyuan, ZHOU Feng. Experimental research on coal adsorption of CH4 and CO2 mixed gas[J]. Safety in Coal Mines, 2022, 53(5): 1-6,12. |
[2] | WANG Zilong, CHEN Wei, CHEN Hao, ZHU Wenshuo. Design of uniqueness detection device based on finger vein recognition[J]. Safety in Coal Mines, 2022, 53(4): 167-171. |
[3] | TAN Chenyang, ZHANG Zhansong, ZHOU Xueqing, GUO Jianhong, XIAO Hang, CHEN Tao, QIN Ruibao, YU Jie. Pattern recognition model of coalbed methane productivity based on random forest algorithm[J]. Safety in Coal Mines, 2022, 53(2): 170-178,186. |
[4] | ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines, 2021, 52(2): 165-168. |
[5] | ZHAO Yanjun, FENG Guoqi, CHEN Lei, HUANG Xiaofei, QU Yi, ZHANG Dan. Reconstruction of Particle Size Distribution Based on Hybrid Artificial Bee Colony Algorithm and Generalized Pattern Search Algorithm[J]. Safety in Coal Mines, 2016, 47(10): 231-234. |
[6] | ZHOU Junjie, WU Zepeng, DU Zhenchuan, JIN Kankun. Comprehensive Recognition Technology of Collapsed Column in Coalfield[J]. Safety in Coal Mines, 2016, 47(6): 74-77. |
[7] | ZHAO Wei, REN Fengguo. Prediction of Coal Spontaneous Combustion in Mine Based on Fuzzy C Means Clustering Algorithm[J]. Safety in Coal Mines, 2015, 46(11): 183-185. |
[8] | XIA Yan, XU Chunyu, SONG Jiancheng, GENG Pulong, ZHAO Yu, YANG Jiankang. Feature Extraction and Pattern Recognition Method of Vibration Signals in High Voltage Distribution Equipment Based on LabVIEW[J]. Safety in Coal Mines, 2015, 46(8): 103-106. |
[9] | LIAN Zeng-zeng, TAN Zhi-xiang, DENG Ka-zhong, Guo Cang. Damage Grade Forecast of Buildings in Mining Area Based on Fuzzy Pattern Recognition[J]. Safety in Coal Mines, 2013, 44(2): 219-221. |
[10] | LANG Li-ying, WEI Na. Design and Implementation of Embedded Face Recognition Attendance System[J]. Safety in Coal Mines, 2012, 43(4): 68-70. |