• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHAO Wei, REN Fengguo. Prediction of Coal Spontaneous Combustion in Mine Based on Fuzzy C Means Clustering Algorithm[J]. Safety in Coal Mines, 2015, 46(11): 183-185.
Citation: ZHAO Wei, REN Fengguo. Prediction of Coal Spontaneous Combustion in Mine Based on Fuzzy C Means Clustering Algorithm[J]. Safety in Coal Mines, 2015, 46(11): 183-185.

Prediction of Coal Spontaneous Combustion in Mine Based on Fuzzy C Means Clustering Algorithm

More Information
  • Published Date: November 19, 2015
  • To realize the prediction control of coal spontaneous combustion in mine, we analyze the reasons and get a total of 6 kinds of factors including coal moisture content, calorific value, sulphur content, angle of inclination, geological structure and gas content of coal seam. Through data selection over the years in a mine, we classify the data by fuzzy C means clustering algorithm and build standard model base. We match the new data with model base by close degree of fuzzy pattern recognition method, predict spontaneous combustion degree of the mining coal seam, and choose a different mining scheme to control coal spontaneous combustion and ensure safety production according to different degree.
  • [1]
    冯海明,金龙哲,张春芝.基于神经网络的煤炭自燃预测及在MATLAB上的实现[J].中国煤炭,2008,34(5):78-81.
    [2]
    刘贝,黄文辉,敖卫华,等.我国煤炭自燃影响因素分析[J].煤炭科学技术,2013(8):218-221.
    [3]
    刘德馨,李晓理,周翔,等.模糊C均值聚类算法在高炉料面分类中的应用[J].北京科技大学学报,2012(6):683-690.
    [4]
    孙英娟,孙英慧,蒲东兵.模糊C均值聚类算法在识别中的应用研究[J].长春师范学院学报,2010,29(5):13-16.
    [5]
    冯海明,张春芝.模糊聚类法在矿井煤炭自燃预测中的应用[J].北京工业职业技术学院学报,2008(4):1.
    [6]
    胡英俊,邹德蕴,段伟,等.基于BP神经网络的煤层自燃预测[J].安全与环境学报,2007(2):125-128.
    [7]
    同小军,曾山,欧军,等.两阶段模糊C均值聚类及其应用[J].华中科技大学学报,2008,36(11):71-74.
    [8]
    江洪青,梁汉东,高永奎.基于MATLAB的神经网络动态安全预测方法与应用[J].煤炭工程,2004(3):72.
  • Related Articles

    [1]LI Qifan, ZHANG Yulong, HAN Baibin, ZHANG Xin, HU Shengyong, ZHOU Chunshan, ZHANG Tong, ZHANG Yu. Study on key control factors and risk assessment model of spontaneous combustion of coal gangue[J]. Safety in Coal Mines, 2025, 56(3): 105-117. DOI: 10.13347/j.cnki.mkaq.20240291
    [2]CAO Furong, WU Xuesong, LI Jun, FU Tianyu, LIU Jiawei, LI Zhihui, YANG Xiaobin. Prediction of coal spontaneous combustion temperature with multi-gas index based on machine learning[J]. Safety in Coal Mines, 2024, 55(4): 106-113. DOI: 10.13347/j.cnki.mkaq.20231426
    [3]ZHANG Zenghui. Prediction model for spontaneous combustion hazard zone in downward ventilation gob of gently inclined coal seam[J]. Safety in Coal Mines, 2023, 54(12): 73-79. DOI: 10.13347/j.cnki.mkaq.2023.12.011
    [4]WANG Minhua, NIU Xian. Natural prediction model of goaf residual coal based on data reconstruction and enhancement[J]. Safety in Coal Mines, 2022, 53(9): 86-93.
    [5]SHI Shiliang, ZENG Mingsheng, LI He, LU Yi. Coal spontaneous combustion and gas symbiotic disasters evolution and early warning[J]. Safety in Coal Mines, 2022, 53(9): 9-16.
    [6]ZHANG Di, MENG Lei, DONG Fei, DING Enjie, ZHAO Duan. Construction of Mine Water Inrush Warning Knowledge Base Based on Ontology[J]. Safety in Coal Mines, 2018, 49(11): 91-95.
    [7]ZHU Lingqi, SHAO Jingjing, LIU Cong, WANG Fusheng. Research on Forecasting Model of Bituminous Coal Spontaneous Combustion Combining Indicator Gases and Temperature[J]. Safety in Coal Mines, 2016, 47(1): 44-46,50.
    [8]WANG Jiangrong, LUO Ziqin, WEN Hui. Application of Fuzzy Comprehensive Evaluation Model in Recognition of Coal Samples[J]. Safety in Coal Mines, 2014, 45(12): 123-125,128.
    [9]WU Kang-hua. Experiments Research on Characters of K1 Coal Spontaneous Combustion in Zhongliangshan South Coal Mine[J]. Safety in Coal Mines, 2013, 44(7): 21-24.
    [10]LIAN Zeng-zeng, TAN Zhi-xiang, DENG Ka-zhong, Guo Cang. Damage Grade Forecast of Buildings in Mining Area Based on Fuzzy Pattern Recognition[J]. Safety in Coal Mines, 2013, 44(2): 219-221.

Catalog

    Article views (289) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return