Citation: | LI Qifan, ZHANG Yulong, HAN Baibin, et al. Study on key control factors and risk assessment model of spontaneous combustion of coal gangue[J]. Safety in Coal Mines, 2025, 56(3): 105−117. DOI: 10.13347/j.cnki.mkaq.20240291 |
To study the physical and chemical reaction characteristics during the spontaneous combustion process, and analyze the key controlling factors of coal gangue spontaneous combustion, industrial analyzers, elemental analyzers, sulfur content testers, coal spontaneous combustion tendency testers, Fourier transform infrared spectrometers, and thermogravimetric analyzers are used to evaluate coal gangue from eight coal mines: QX (Qinxin), XS (Xinsheng), XZ (Xinzhuang) from Qinshui Coalfield, SJH (Sanjiaohe) from Huoxi Coalfield, FM (Fumin) and BPW (Baopingwan) from Dongsheng Coalfield, SGT (Shigeitai) from Shenfu Coalfield, and DYG (Dayugou) from Xinggong Coalfield, and a risk assessment model for coal gangue spontaneous combustion is established. The results show that FM, BPW, SGT, and DYG coal gangues have high ash content but relatively low volatile matter and fixed carbon, which is consistent with the elemental analysis results. Moreover, the spontaneous combustion mechanism of coal gangue is considered to be a coupling of the coal combustion mechanism and pyrite combustion mechanism, with the essence of coal gangue spontaneous combustion being an oxidation process. The pyrite sulfur content, physical oxygen absorption, and the content of aliphatic C−H active components are relatively higher in QX, XS, XZ, and SJH coal gangues. Thermogravimetric analysis reveals the ignition point temperature and the activation energy required for the thermal decomposition stage of the gangue; the BPW coal gangue has relatively low ignition point temperature and activation energy for the thermal decomposition stage. The six key controlling factors for spontaneous combustion of coal gangue are thus identified: ash content, pyrite sulfur content, physical oxygen absorption, active functional group content (aliphatic C−H components), ignition point temperature, and activation energy of spontaneous combustion reactions.
[1] |
王振兴,王洋,韩东洋,等. 煤矸石放热危险性与微观基团相关性研究[J]. 煤矿安全,2024,55(2):107−115.
WANG Zhenxing, WANG Yang, HAN Dongyang, et al. Study on correlation between exothermic risk of coal gangue and microscopic groups[J]. Safety in Coal Mines, 2024, 55(2): 107−115.
|
[2] |
赵宝龙. 通过分级预处理降低煤矸石山自燃的技术研究[J]. 应用能源技术,2022(3):1−4.
ZHAO Baolong. Technical research on reducing the spontaneous combustion of coal gangue pile by hierarchical pretreatment[J]. Applied Energy Technology, 2022(3): 1−4.
|
[3] |
张勇,王启庆,张育宝,等. 粉煤灰煤矸石混合浆液性能试验研究[J]. 煤矿安全,2023,54(3):140−146.
ZHANG Yong, WANG Qiqing, ZHANG Yubao, et al. Experimental study on performance of fly ash and coal gangue mixed slurry[J]. Safety in Coal Mines, 2023, 54(3): 140−146.
|
[4] |
王小云,牛艳霞. 煤矸石研究综述:分类、危害及综合利用[J]. 化工矿物与加工,2023,52(11):18−25.
WANG Xiaoyun, NIU Yanxia. Review of research on coal gangue with its classification, hazards and comprehensive utilization[J]. Industrial Minerals & Processing, 2023, 52(11): 18−25.
|
[5] |
WANG Z Q, HONG C, XING Y, et al. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts[J]. Waste Management, 2018, 74: 288−296. doi: 10.1016/j.wasman.2018.01.002
|
[6] |
董红娟,卢悦,张金山,等. 煤矸石自燃阶段特征与气体释放特性分析[J]. 内蒙古科技大学学报,2022,41(4):341−344.
DONG Hongjuan, LU Yue, ZHANG Jinshan, et al. Analysis on characteristics of spontaneous combustion stage and gas release of coal gangue[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(4): 341−344.
|
[7] |
周琛鸿,李绪萍,张靖,等. 不同浸水率煤矸石浸水复干氧化特性研究[J]. 煤炭科学技术,2024,52(S1):107−115.
ZHOU Chenhong, LI Xuping, ZHANG Jing, et al. Study on oxidation characteristics of coal gangue with different moisture content under water immersion drying[J]. Coal Science and Technology, 2024, 52(S1): 107−115.
|
[8] |
高彤,张永波,李荣,等. 基于热管群的自燃煤矸石山降温试验研究[J]. 煤矿安全,2023,54(1):77−84.
GAO Tong, ZHANG Yongbo, LI Rong, et al. Experimental study on cooling of spontaneous combustion coal gangue dump based on heat pipe group[J]. Safety in Coal Mines, 2023, 54(1): 77−84.
|
[9] |
ANTHONY D B, HOWARD J B. Coal devolatilization and hydrogastification[J]. AIChE Journal, 1976, 22(4): 625−656. doi: 10.1002/aic.690220403
|
[10] |
DENG J, LI B, XIAO Y, et al. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy[J]. Applied Thermal Engineering, 2017, 116: 244−252. doi: 10.1016/j.applthermaleng.2017.01.083
|
[11] |
LI B, LIU G, GAO W, et al. Study of combustion behaviour and kinetics modelling of Chinese gongwusu coal gangue: Model-fitting and model-free approaches[J]. Fuel, 2020, 268: 117284. doi: 10.1016/j.fuel.2020.117284
|
[12] |
ZHANG Y Y, GUO Y X, CHENG F Q, et al. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis[J]. Thermochimica Acta, 2015, 614: 137−148. doi: 10.1016/j.tca.2015.06.018
|
[13] |
MENG F R, YU J L, TAHMASEBI A, et al. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27(6): 2923−2932.
|
[14] |
CHEN L Z, QI X Y, TANG J, et al. Reaction pathways and cyclic chain model of free radicals during coal spontaneous combustion[J]. Fuel, 2021, 293: 120436. doi: 10.1016/j.fuel.2021.120436
|
[15] |
JIANG X Y, YANG S Q, ZHOU B Z, et al. Study on spontaneous combustion characteristics of waste coal gangue hill[J]. Combustion Science and Technology, 2023, 195(4): 713−727. doi: 10.1080/00102202.2021.1971661
|
[16] |
刘垚,王福生,董轩萌,等. 基于程序升温试验的煤自燃特性及微观机理研究[J]. 煤炭科学技术,2024,52(S1):94−106.
LIU Yao, WANG Fusheng, DONG Xuanmeng, et al. Study on the characteristics and microscopic mechanism of coal spontaneous combustion based on programmed heating experiment[J]. Coal Science and Technology, 2024, 52(S1): 94−106.
|
[17] |
ONIFADE M, GENC B, WAGNER N. Influence of organic and inorganic properties of coal-shale on spontaneous combustion liability[J]. International Journal of Mining Science and Technology, 2019, 29(6): 851−857. doi: 10.1016/j.ijmst.2019.02.006
|
[18] |
ONIFADE M, GENC B. Comparative analysis of coal and coal-shale intrinsic factors affecting spontaneous combustion[J]. International Journal of Coal Science & Technology, 2018, 5(3): 282−294.
|
[19] |
李孜军,姜文娟,陈天丰. 硫铁化物氧化自燃的动力学分析[J]. 中国安全生产科学技术,2018,14(1):24−29.
LI Zijun, JIANG Wenjuan, CHEN Tianfeng. Kinetic analysis on oxidation and spontaneous combustion of iron sulfides[J]. Journal of Safety Science and Technology, 2018, 14(1): 24−29.
|
[20] |
WANG H H, DLUGOGORSKI B Z, KENNEDY E M. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling[J]. Progress in Energy and Combustion Science, 2003, 29(6): 487−513. doi: 10.1016/S0360-1285(03)00042-X
|
[21] |
WANG H, DLUGOGORSKI B Z, KENNEDY E M. Kinetic modeling of low-temperature oxidation of coal[J]. Combustion and Flame, 2002, 131(4): 452−464. doi: 10.1016/S0010-2180(02)00416-9
|
[22] |
KRZTON A, CAGNIANT D, GRUBER R, et al. Application of Fourier self-deconvolution to the FT-i. r. characterization of coals and their N-methyl 2-pyrrolidinone extraction products[J]. Fuel, 1995, 74(2): 217−225. doi: 10.1016/0016-2361(95)92657-R
|
[23] |
邓军,李贝,肖旸,等. 基于热重−傅里叶红外光谱联用的煤矸石自燃特性及微观表征[J]. 西安科技大学学报,2017,37(1):1−6.
DENG Jun, LI Bei, XIAO Yang, et al. Spontaneous combustion characteristics and micro characterization of coal gangue based on thermogravimetry-Fourier tromsform infrared spectrometer[J]. Journal of Xi’an University of Science and Technology, 2017, 37(1): 1−6.
|
[24] |
ZHANG Y T, LI Y Q, HUANG Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2963−2974. doi: 10.1007/s10973-017-6738-x
|
[25] |
SHARMA N, SOOD A K, BHATT S S, et al. Thermonanalytical investigations of monochlorobis (2, 4-pentanedionato) vanadium(IV) aryloxides[J]. Journal of Thermal Analysis and Calorimetry, 2000, 61(3): 779−785. doi: 10.1023/A:1010188913186
|
[26] |
COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4914): 68−69. doi: 10.1038/201068a0
|
[27] |
WANG Y F, LIU Q S, LI N, et al. Reaction characteristics and kinetics of the low-temperature oxidation and weight gain of coal[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(19): 2352−2368. doi: 10.1080/15567036.2020.1822957
|