• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
QIN Chuanrui, LU Wei, XU Shuai, HE Zhenglong, LI Jinliang, HAO Yu. Effect of Silane Coupling Agent on Compressive Strength of Min-used Polyurethane/Fly Ash Reinforced Materials[J]. Safety in Coal Mines, 2019, 50(7): 75-79.
Citation: QIN Chuanrui, LU Wei, XU Shuai, HE Zhenglong, LI Jinliang, HAO Yu. Effect of Silane Coupling Agent on Compressive Strength of Min-used Polyurethane/Fly Ash Reinforced Materials[J]. Safety in Coal Mines, 2019, 50(7): 75-79.

Effect of Silane Coupling Agent on Compressive Strength of Min-used Polyurethane/Fly Ash Reinforced Materials

More Information
  • Published Date: July 19, 2019
  • For the occurrence of accidents such as crushing of rock mass under the coal mine and roof caving and rib spalling, the polyether polyol, polymethylene polyphenyl isocyanate, fly ash, flame retardant TCPP, silane coupling agent are used as the basic raw materials, and the original polymerization is carried out. The Polyurethane and fly ash reinforcing material was prepared by the original flavor polymerization method. On this basis, the optimal amount of fly ash and the amount of 3-methacryloxy-propyl trimethoxy silane (MPS) additive were explored. Under the optimal conditions, the microstructure and particle size distribution of PU/FA composites were studied and compared by scanning electron microscopy and particle size analyzer. At the same time, the effects of compressive strength on PU, PU/FA-0% and PU/FA-2.5% reinforcement materials under different curing time were studied. The results show that the fly ash can be effectively filled into the polyurethane matrix and the strength is optimal when the content is 20%. Adding 2.5% MPS can not only effectively promote the refinement of the fly ash particles and the dispersion in the polyurethane matrix. It can further improve the interfacial properties and crosslink density between the inorganic fly ash and the organic polyurethane.
  • [1]
    宋振骐,郝建,石永奎,等.“实用矿山压力控制理论”的内涵及发展综述[J].山东科技大学学报(自然科学版),2019(1):1-15.
    [2]
    张虎仕,向剑飞.新型矿用化学注浆材料的研究与应用[J].煤炭科学技术,2012,40(2):36-39.
    [3]
    贺正龙.硅烷偶联剂对聚氨酯/水玻璃加固材料压缩强度的影响[C]太原:中国聚氨酯工业协会弹性体专业委员会2015年年会论文集.北京:中国聚氨酯工业协会,2015:7.
    [4]
    苏健.煤矿用防灭火材料的制备与性能研究[D].北京:北京工业大学,2016.
    [5]
    秦传睿,陆伟,李金亮,等.以粉煤灰为骨料与矿用聚氨酯复配的研究[J].中国煤炭,2018,44(9):83-86.
    [6]
    贺文,周兴旺,徐润.新型水玻璃化学注浆材料的试验研究[J].煤炭学报,2011,36(11):1812-1815.
    [7]
    孙家干,杨建军,吴明元,等.聚氨酯/无机粒子纳米复合材料的制备与应用进展[J].合成橡胶工业,2010, 33(4):319-324.
    [8]
    杜峰,项尚林,方显力,等.粉煤灰对聚氨酯硬质泡沫性能的影响[J].新型建筑材料,2014,41(4):15-17.
    [9]
    杨云飞.聚合物/粉煤灰复合材料的制备及表征[D].太原:太原理工大学,2012.
    [10]
    Xiaoyan Gao, Yanchao Zhu, Shi Zhou, et al. Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites[J]. Colloids and Surfaces A: Physicochem Eng, 2011, 377: 312-317.
    [11]
    Saha M C, Kabir M E, Jeelan S. Enhancement in Themal and Mechanical Properties of Polyurethane Foam Infuaed with Nanoparticles[J]. Materials Science and Engineering: A, 2008, 479(1/2): 213-222.
    [12]
    邢燕侠.填料表面处理研究综述[J].覆铜板资讯,2014(5):45-48.
    [13]
    聂长明.基团电负性[J].武汉大学学报(自然科学版),2000(2):176-180.
    [14]
    秦忠诚,陈光波,李谭,等.冲击地压“能量关键层”确定实验研究[J].山东科技大学学报(自然科学版),2018,37(6):1-10.
    [15]
    赵乐强,冯建伟.岩石力学层与构造裂缝发育关系研究[J].山东科技大学学报(自然科学版),2018,37(1):35-46.
    [16]
    Kazuo Suzuki. Experimental study on internal cracking of partially prestressed concrete flexural members[J].Structural and Construction Engineering, 1986(365): 9-19.
    [17]
    李永学.聚氨酯粉煤灰复合材料在桥梁结构抗震加固工程中的应用研究[D].哈尔滨:哈尔滨工业大学,2011.
    [18]
    张世鹏,铁生年.KH-570硅烷偶联剂表面改性微硅粉分散性研究[J].人工晶体学报,2018,47(7):1396.
  • Related Articles

    [1]WANG Xueqing, ZHAO Yunmeng, FENG Ying, WANG Zhuangzhuang, LI Yongchao, CHEN Bo, DONG Ze, WU Shuaijun. Simulation of cracks propagation and fractal characteristics of composite rock strata with holes and fractures[J]. Safety in Coal Mines, 2024, 55(1): 42-49. DOI: 10.13347/j.cnki.mkaq.20221467
    [2]XUE Weichao, LI Yanzeng. Simulation Study on Crack Propagation Law of Single Hole Pre-fitting Slot Controlling Fracturing[J]. Safety in Coal Mines, 2019, 50(12): 158-162,169.
    [3]SUO Yonglu, QU Huisheng. Study on Mechanical Properties and Acoustic Emission Characteristics of Similar Specimens of Rocks with Different Fracture Angles[J]. Safety in Coal Mines, 2019, 50(11): 54-57.
    [4]XIE Tiancheng, LIU Hongyan. Simulation Study of Crack Propagation in Rock Mass with Arc Cracks[J]. Safety in Coal Mines, 2019, 50(7): 228-233.
    [5]LI Zuyong, WANG Lei. Instability Analysis of Anchorage Supporting in Soft Rock Roadway Based on Strain Softening[J]. Safety in Coal Mines, 2017, 48(6): 219-222.
    [6]XIAO Zhiguo, MENG Leiting. Numerical Analysis of Effect of Coal Seam Water Injection on Crack Propagation and Water Distribution[J]. Safety in Coal Mines, 2016, 47(1): 159-162,166.
    [7]ZHANG Linliang. Stress Characteristics Analysis of Hydraulic Fracturing Influenced Zone Based on FLAC3D Numerical Simulation[J]. Safety in Coal Mines, 2015, 46(10): 190-192.
    [8]WANG Hui, GAO Zhaoning, MENG Xiangrui, YING Zhizhong. Numerical Simulation of Single Fracture Rock Damage Under Uniaxial Compression[J]. Safety in Coal Mines, 2015, 46(1): 29-32.
    [9]CHEN Kang, ZHAO Guang-ming, MENG Xiang-rui. Influence Factors Research on Uniaxial Compression Strain Softening in Rock Shear Zone[J]. Safety in Coal Mines, 2013, 44(3): 29-32.
    [10]SUN Deng-lin, LIU Shi-ming. Numerical Simulation and Analysis of Blast-induced Cracks in Hard Coal Body[J]. Safety in Coal Mines, 2012, 43(10): 192-194.

Catalog

    Article views (101) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return