• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SUO Yonglu, QU Huisheng. Study on Mechanical Properties and Acoustic Emission Characteristics of Similar Specimens of Rocks with Different Fracture Angles[J]. Safety in Coal Mines, 2019, 50(11): 54-57.
Citation: SUO Yonglu, QU Huisheng. Study on Mechanical Properties and Acoustic Emission Characteristics of Similar Specimens of Rocks with Different Fracture Angles[J]. Safety in Coal Mines, 2019, 50(11): 54-57.

Study on Mechanical Properties and Acoustic Emission Characteristics of Similar Specimens of Rocks with Different Fracture Angles

More Information
  • Published Date: November 19, 2019
  • In order to study the variation of mechanical properties of rock-like materials under the influence of prefabricated cracks with different dip angles, rock-like samples were made from river sand, cement, gypsum and other materials, and cracks of different angles were made for the similar rock samples. Uniaxial compression experiments were carried out on samples with different inclination angles to study the variation of mechanical properties. The peak intensity of the specimen with pre-formed cracks increases logarithmically with the the increase dip angle of the fracture. At the same time, the peak strain increases exponentially with the increase dip angle of the fracture. The cumulative count of AE event and the energy intensity of the pre-formed fracture specimens are similar. It is divided into three stages: the compaction initiation stage, the elastic stablity growth stage, and the destruction of the sharp growth stage. And the cumulative count of AE event increases with the increase of the inclination angle, and the energy intensity also increases with the increase of the inclination angle.
  • [1]
    钱七虎.地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报,2012,31(10):1945-1956.
    [2]
    DOAN M L, GARY G. Rock pulverization at high strain rate near the San Andreas fault[J]. Nature Geoscience, 2009, 2(2):709.
    [3]
    张强勇.地下工程模型试验新方法、新技术及工程应用[M].北京:科学出版社,2012.
    [4]
    李天斌,王湘锋,孟陆波.岩爆的相似材料物理模拟研究[J].岩石力学与工程学报,2011(S1):2610-2616.
    [5]
    张杰,侯忠杰.固液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [6]
    黄庆享,张文忠,侯志成.固液耦合试验隔水层相似材料的研究[J].岩石力学与工程学报,2010,29(S1):2813-2818.
    [7]
    李术才,周毅,李利平,等.地下工程流固耦合模型试验新型相似材料的研制及应用[J].岩石力学与工程学报,2012,31(6):1128-1137.
    [8]
    孙文斌,张士川,李杨杨,等.固流耦合相似模拟材料研制及深部突水模拟试验[J].岩石力学与工程学报,2015,34(S1):2665-2670.
    [9]
    陈军涛,尹立明,孙文斌,等.深部新型固流耦合相似材料的研制与应用[J].岩石力学与工程学报,2015, 34 (S2):3956-3964.
    [10]
    王汉鹏,张庆贺,袁亮,等.含瓦斯煤相似材料研制及其突出试验应用[J].岩土力学,2015,36(6):1676.
    [11]
    陈陆望,白世伟.脆性岩体岩爆倾向性的相似材料配比试验研究[J].岩土力学,2006,27(S2):1050.
    [12]
    李连贵,徐文胜,许迎年,等.岩爆模拟材料研制及模拟试验分析[J].华中科技大学学报, 2001,29(6): 80-82.
    [13]
    潘一山,章梦涛,王来贵,等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4): 49-56.
    [14]
    徐文胜,许迎年,王元汉,等.岩爆模拟材料的筛选试验研究[J].岩石力学与工程学报,2000(S1):873.
    [15]
    BURGERT W, LIPPMAN M. Models of translator rock bursting in coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 285-294.
    [16]
    张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [17]
    史小萌,刘保国,肖杰.水泥和石膏胶结相似材料配比的确定方法[J].岩土力学,2015,36(5):1357.
    [18]
    林海飞,翟雨龙,李树刚,等.基于正交设计的“固-气”耦合相似材料力学与渗透特性试验研究[J].煤炭学报,2016,41(3):672-679.
  • Related Articles

    [1]GAO Xinyu, LIU Jian, ZHANG Chao, ZHANG Chi. Experimental Study on Permeability Improvement of Deep Hole Pre-splitting Cumulative Blasting in Low Permeability Coal Seam[J]. Safety in Coal Mines, 2019, 50(4): 23-26,31.
    [2]ZHANG Bailin, LI Haojun, ZHANG Xinghua. Parameters Optimization for Hole Layout of Liquid CO2 Phase-change Fracturing Technology Based on COMSOL Numerical Simulation[J]. Safety in Coal Mines, 2018, 49(9): 207-210.
    [3]SUN Guowen, LUO Jiayuan, LUO Binyu. Numerical Simulation on Coupling Relationship Between Permeability and Stress of Mining-induced Strata[J]. Safety in Coal Mines, 2018, 49(1): 214-217.
    [4]CHEN Bin, ZHAN Qinjian. Fracturing and Permeability Increasing Technology for Radial Well in Rapid Unconvering Coal of Shaft[J]. Safety in Coal Mines, 2017, 48(11): 76-79.
    [5]JIAO Xianjun, CAI Feng. Study on Intensified Permeability Improving Technology by Hydraulic Fracturing in Deep and Low Permeability Coal Seam[J]. Safety in Coal Mines, 2017, 48(10): 76-79.
    [6]LIANG Wenxu. Experimental Study on Point Hydraulic Fracturing in Low Permeability Coal Seam[J]. Safety in Coal Mines, 2017, 48(6): 44-47,51.
    [7]WANG Kaide, NING Hongjin, WAN Chunxin, QIU Han, HOU Xingpeng, WANG Qingchao. Numerical Simulation on Distribution Laws of Water Injection Pressure and Permeability of Coal Seam[J]. Safety in Coal Mines, 2016, 47(5): 181-184.
    [8]LI Baofa, LIANG Wenxu, HU Gaojian, LI Jiangtao. Application of Hydraulic Fracturing Permeability Improvement Technology in Xing'an Coal Mine[J]. Safety in Coal Mines, 2015, 46(7): 159-162.
    [9]LI Shou-guo. Numerical Simulation of Coal Fracture Caused by High-pressure Air Blasting[J]. Safety in Coal Mines, 2013, 44(12): 163-165.
    [10]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.

Catalog

    Article views (119) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return