• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Shijie, HUANG Zhen, LIAO Yongbin, ZHAO Kui, LI Haigang. Study on Permeability Test and Dynamic Monitoring of Fault in Deep Roadway[J]. Safety in Coal Mines, 2019, 50(7): 50-55.
Citation: LI Shijie, HUANG Zhen, LIAO Yongbin, ZHAO Kui, LI Haigang. Study on Permeability Test and Dynamic Monitoring of Fault in Deep Roadway[J]. Safety in Coal Mines, 2019, 50(7): 50-55.

Study on Permeability Test and Dynamic Monitoring of Fault in Deep Roadway

More Information
  • Published Date: July 19, 2019
  • More than 80% of mine water inrush accidents are related to faults in China, most of which are non-conducting faults under primitive geological conditions that cause water inrush under the influence of mining. Structural defect and mining effect of faults are two important causes of fault water inrush. In order to deeply explore the fault water inrush mechanism, the in-situ water pressure test and hydraulic pressure dynamic monitoring of the deep roadway fault are carried out from the characteristics of fault itself impermeability and its susceptibility to mining effect. The impermeability of the fault is studied and real-time safety under the influence of mining conditions was monitored. The results show that: comparing the pressure test results of the normal bottom plate, both the fault and the normal bottom plate are found to have the process of flow mutation, flow increment and flow surge; the impermeability of the fault and normal bottom plate is 0.64 MPa/m, 2.03 MPa/m, respectively, and the impermeability of the unit thickness fault is obviously weaker than that of the normal bottom plate; during the mining process, the internal seepage field of the branch fault has changed, but did not cause fault-activated water inrush.
  • [1]
    董书宁.对中国煤矿水害频发的几个关键科学问题的探讨[J].煤炭学报,2010,35(1):66-71.
    [2]
    陆银龙.渗流-应力耦合作用下岩石损伤破裂演化模型与煤层底板突水机理研究[D].徐州:中国矿业大学,2013.
    [3]
    郭德春,张蕊,邵明喜,等.下组煤底板岩层阻渗性实测研究[J].应用基础与工程科学学报,2017,25(1):78-88.
    [4]
    武强,张志龙,马积福.煤层底板突水评价的新型实用方法I[J].煤炭学报,2007,32 (1):42-47.
    [5]
    陆银龙,王连国.基于微裂纹演化的煤层底板损伤破裂与渗流演化过程数值模拟[J].采矿与安全工程学报,2015,32(6):889-897.
    [6]
    缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [7]
    黄存捍,冯涛,王卫军,等.断层影响下底板隔水层的破坏机理研究[J].采矿与安全工程学报,2010,27(2):219-222.
    [8]
    鲁海峰,沈丹,姚多喜,等.断层影响下底板采动临界突水水压解析解[J].采矿与安全工程学报,2014,31(6):888-895.
    [9]
    乔伟,胡戈,李文平.综放开采断层活化突水渗-流转换试验研究[J].采矿与安全工程学报,2013,30(1):30-37.
    [10]
    Caine JS, Evans JP, Foster CB. Fault zone architecture and permeability structure[J]. Geology, 1995, 24: 1025.
    [11]
    李振华,翟常治,李龙飞.带压开采煤层底板断层活化突水机理试验研究[J].中南大学学报(自然科学版),2015,46(5):1806-1811.
    [12]
    Babiker M, Gudmundsson A.The effects of dykes and faults on groundwater flow in an arid land: theRed Sea Hills, Sudan[J]. J Hydrol, 2004, 297: 256-273.
    [13]
    李青锋,王卫军,彭文庆,等.断层采动活化对南方煤矿岩溶突水影响研究[J].岩石力学与工程学报,2010,29(S1):3417-3424.
    [14]
    朱斯陶,姜福兴,K J A Kouame,等.深井特厚煤层综放工作面断层活化规律研究[J].岩石力学与工程学报,2016,35(1):50-58.
    [15]
    刘业娇,薛俊华,袁亮,等.软岩底板突水机理分析及数值试验[J].煤炭学报,2017,42(12):3255-3261.
    [16]
    许进鹏,张福成,桂辉,等.采动断层活化导水特征分析与实验研究[J].中国矿业大学学报,2012,41(3):415-419.
    [17]
    Zhang R, Jiang Z, Zhou H, et al.Groundwater outbursts from faults above a confined aquifer in the coal mining[J]. Natural Hazards, 2014, 71(3): 1861.
    [18]
    Li LC, Yang TH, Liang ZZ, et al.Numerical investigation of groundwater outbursts near faults inunderground coal mines[J]. Int J Coal Geol, 2011, 85: 276-288.
    [19]
    卜万奎,茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(2):386-394.
    [20]
    李海燕,张红军,李术才,等.断层滞后型突水渗-流转化机制及数值模拟研究[J].采矿与安全工程学报,2017,34(2):323-329.
    [21]
    黄震,姜振泉,孙晓倩,等.深部岩体在高压水头作用下的渗透性状况试验[J].采矿与安全工程学报, 2015,32(4):651-657.
    [22]
    张蕊.带压开采底板构造裂隙带活化导渗机制[D].徐州:中国矿业大学,2014.
    [23]
    黄震.流固耦合作用下岩体渗流演化规律与突水灾变机理研究[D].徐州:中国矿业大学, 2016.
    [24]
    Huang Z, Jiang Z Q, Qian Z W, et al. ANALYTICAL AND EXPERIMENTAL STUDY OF WATER SEEPAGE PROPAGATION BEHAVIOR IN THE FAULT[J]. Acta Geodynamica Et Geomaterialia, 2014, 11(4): 361-370.
    [25]
    张蕊,姜振泉,岳尊彩,等.采动条件下厚煤层底板破坏规律动态监测及数值模拟研究[J].采矿与安全工程学报,2012,29(5):625-630.
  • Related Articles

    [1]WANG Anyi, LIANG Yan. Research on OFDM channel estimation of mine based on improved SRCNN[J]. Safety in Coal Mines, 2024, 55(2): 211-217. DOI: 10.13347/j.cnki.mkaq.20230658
    [2]QIAO Zhen, GAO Jianning. Research Progress of Electromagnetic Emissions Prediction Technology for Coal and Rock Fracture[J]. Safety in Coal Mines, 2020, 51(6): 196-201.
    [3]GAO Fuqiang, ZHANG Guangxiong, YANG Jun. Frequency Spectrum Characteristics of Blasting Seismic Wave Attenuation Laws in Surface Coal Mine[J]. Safety in Coal Mines, 2017, 48(2): 76-78,82.
    [4]GU Weihong, CHEN Xibin, BAO Guo. Analysis of Real-time Observation Coordinate Sequence for Mining Subsidence by PCA and Welch[J]. Safety in Coal Mines, 2016, 47(12): 211-214.
    [5]ZHU Lipeng, TONG Jun, LIU Lijuan, QIAO Jiang. Design of Mine-used Low Voltage Vacuum Feed Switch[J]. Safety in Coal Mines, 2016, 47(1): 103-105,109.
    [6]FENG Wenbin. Modulation Technology of Multi-gas Spectrum Line in Mine-used Spectral Equipment[J]. Safety in Coal Mines, 2015, 46(5): 117-120.
    [7]WU Yincheng, LIU Jingwei, XIN Yongxiang, ZHANG Xiaobo. Design of Gas Sensor Based on PWM Zero Calibration[J]. Safety in Coal Mines, 2015, 46(5): 106-108.
    [8]WEI Sijiang, YANG Yushun. Spectrum Characteristic Analysis of Rock Burst Microseismic Signal in Yimei Mining Area[J]. Safety in Coal Mines, 2015, 46(4): 181-184,188.
    [9]WEI Shaoliang, CHANG Ying, LIU Dahai. Underground Low-voltage Power Line Communication Technology Based on CLUSTER-OFDM[J]. Safety in Coal Mines, 2014, 45(6): 96-99.
    [10]ZHANG Dian, CHEN Jun-quan, HU Qing-song, CHEN Wei. Distributed Tunnel Spectrum Cooperation Sensing Based on the Cluster[J]. Safety in Coal Mines, 2012, 43(9): 103-105.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return