• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
CAO Ai-hu, DING Yan-feng, JIANG Shu-guang, LIU Tao, ZHANG Ping. Study on Multivariate Nonlinear Combination Prediction of Gas Emission[J]. Safety in Coal Mines, 2012, 43(2): 1-4.
Citation: CAO Ai-hu, DING Yan-feng, JIANG Shu-guang, LIU Tao, ZHANG Ping. Study on Multivariate Nonlinear Combination Prediction of Gas Emission[J]. Safety in Coal Mines, 2012, 43(2): 1-4.

Study on Multivariate Nonlinear Combination Prediction of Gas Emission

More Information
  • Published Date: February 09, 2012
  • Considering source limitations and modeling form sensitivity of the existing monadic linear forecasting method,multivariate nonlinear combination prediction model of gas emission is built by induced ordered weighted geometric averaging(IOWGA) operator.The engineering examples show that this prediction model has various advantages such as high prediction accuracy,good data credibility and ideal prediction effect,etc.It can be applied to the coal mine safety production forecast.
  • [1]
    徐涛,郝彬彬,张华.分源预测法在新建矿井瓦斯涌出量预测中的应用[J].煤炭技术,2009,28(7):104-106.
    [2]
    陶云奇,许江,李树春.改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量[J].煤炭学报,2007,32(4):391-395.
    [3]
    陈富勇.利用回归分析预测矿井来开采区的瓦斯涌出量[J].煤矿安全,2003,34(2):15-16.
    [4]
    姚建,王新民,伍爱友.矿井瓦斯涌出量预测的GM(1,1)模型研究[J].工业安全与环保,2005,31(9):1-3.
    [5]
    肖鹏,李树刚,张进.MGM(1,N)模型用于瓦斯涌出量预测[J].西安科技大学学报,2008,28(2):95-98.
    [6]
    朱红青,常文杰,张彬.回采工作面瓦斯涌出BP神经网络分源预测模型及应用[J].煤炭学报,2007,32(5):504-508.
    [7]
    崔邯龙,李海涛,孟文清.综掘工作面瓦斯涌出量的支持向量机预测模型[J].煤炭工程,2009(2):75-77.
    [8]
    刘思峰,谢乃明.灰色系统理论及其应用[M].北京:科学出版社,2008.
    [9]
    刘兴堂,梁炳成,刘力,等.复杂系统建模理论、方法与技术[M].北京:科学出版社,2008.
    [10]
    姜雷.基于BP神经网络的煤矿瓦斯浓度预测模型构建及仿真[J].矿业安全与环保,2010,37(4):37-39.
    [11]
    陈华友,盛昭瀚.一类基于IOWGA算子的组合预测方法[J].管理工程学报,2004,12(5):35-40.
    [12]
    党耀国,刘思峰,刘斌,等.灰色斜率关联度的改进[J].中国工程科学,2004,6(3):41-44.
  • Related Articles

    [1]WANG Man, JIANG Yongdong, WANG Yingwei, LI Xiyuan, ZHOU Feng. Experimental research on coal adsorption of CH4 and CO2 mixed gas[J]. Safety in Coal Mines, 2022, 53(5): 1-6,12.
    [2]WANG Zilong, CHEN Wei, CHEN Hao, ZHU Wenshuo. Design of uniqueness detection device based on finger vein recognition[J]. Safety in Coal Mines, 2022, 53(4): 167-171.
    [3]TAN Chenyang, ZHANG Zhansong, ZHOU Xueqing, GUO Jianhong, XIAO Hang, CHEN Tao, QIN Ruibao, YU Jie. Pattern recognition model of coalbed methane productivity based on random forest algorithm[J]. Safety in Coal Mines, 2022, 53(2): 170-178,186.
    [4]ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines, 2021, 52(2): 165-168.
    [5]ZHAO Yanjun, FENG Guoqi, CHEN Lei, HUANG Xiaofei, QU Yi, ZHANG Dan. Reconstruction of Particle Size Distribution Based on Hybrid Artificial Bee Colony Algorithm and Generalized Pattern Search Algorithm[J]. Safety in Coal Mines, 2016, 47(10): 231-234.
    [6]ZHOU Junjie, WU Zepeng, DU Zhenchuan, JIN Kankun. Comprehensive Recognition Technology of Collapsed Column in Coalfield[J]. Safety in Coal Mines, 2016, 47(6): 74-77.
    [7]ZHAO Wei, REN Fengguo. Prediction of Coal Spontaneous Combustion in Mine Based on Fuzzy C Means Clustering Algorithm[J]. Safety in Coal Mines, 2015, 46(11): 183-185.
    [8]XIA Yan, XU Chunyu, SONG Jiancheng, GENG Pulong, ZHAO Yu, YANG Jiankang. Feature Extraction and Pattern Recognition Method of Vibration Signals in High Voltage Distribution Equipment Based on LabVIEW[J]. Safety in Coal Mines, 2015, 46(8): 103-106.
    [9]LIAN Zeng-zeng, TAN Zhi-xiang, DENG Ka-zhong, Guo Cang. Damage Grade Forecast of Buildings in Mining Area Based on Fuzzy Pattern Recognition[J]. Safety in Coal Mines, 2013, 44(2): 219-221.
    [10]LANG Li-ying, WEI Na. Design and Implementation of Embedded Face Recognition Attendance System[J]. Safety in Coal Mines, 2012, 43(4): 68-70.

Catalog

    Article views (1560) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return