• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHOU Yuanchao, LIU Chuanxiao, MA Depeng, ZHAO Zhen. Analysis of Strength and Acoustic Emission Characteristics of Coal and Rock Mass in Different Combinations[J]. Safety in Coal Mines, 2019, 50(2): 232-236.
Citation: ZHOU Yuanchao, LIU Chuanxiao, MA Depeng, ZHAO Zhen. Analysis of Strength and Acoustic Emission Characteristics of Coal and Rock Mass in Different Combinations[J]. Safety in Coal Mines, 2019, 50(2): 232-236.

Analysis of Strength and Acoustic Emission Characteristics of Coal and Rock Mass in Different Combinations

More Information
  • Published Date: February 19, 2019
  • To study the mechanical properties and acoustic emission characteristics of coal and rock mass with different height ratios under different compound modes, RFPA2D numerical simulation software was used to conduct the simulation researches for coal and rock mass. Results showed that the uniaxial compressive strength of the combination decreased with the increase of the ratio of the coal block in the combination, and the height ratio of rock to coal had a significant effect on acoustic emission energy. The higher the ratio of rock height in the coal-rock combination, the stronger the acoustic emission signals become, and the more acoustic emission energy it generated; the different combination of coal and rock would also affect the intensity when the coal-rock height ratio was the same, and the intensity of combination indicated the combinations of coal-rock, rock-coal, and rock-coal-rock in descending order. The analysis of the acoustic emission of the combination showed that the acoustic emission energy produced by the combination is proportional to the compressive strength. That is to say, the greater the compressive strength was, the more acoustic emission energy was produced.
  • [1]
    付斌,周宗红,王友新,等.煤岩组合体冲击倾向性的RFPA(2D)数值模拟[J].煤矿机械,2016,37(5):90.
    [2]
    左建平,陈岩,张俊文,等.不同围压作用下煤-岩组合体破坏行为及强度特征[J].煤炭学报,2016,41(11):2706-2713.
    [3]
    赵宏林,赵越.倾角对煤岩组合体力学及冲击倾向性影响的颗粒流分析[J].煤矿安全,2018,49(3):198.
    [4]
    郭东明,左建平,张毅,等.不同倾角组合煤岩体的强度与破坏机制研究[J].岩土力学,2011(5):1333.
    [5]
    郭伟耀,周恒,徐宁辉,等.煤岩组合体力学特性模拟研究[J].煤矿安全,2016,47(2):33-35.
    [6]
    王晓南,陆菜平,薛俊华,等.煤岩组合体冲击破坏的声发射及微震效应规律试验研究[J].岩土力学,2013(9):2569-2575.
    [7]
    王宁,姜耀东,朱登元,等.坚硬煤岩组合体变形破坏特征及冲击特性研究[J].长江科学院院报,2018,35(3):65-69.
    [8]
    左建平,陈岩,崔凡.不同煤岩组合体力学特性差异及冲击倾向性分析[J].中国矿业大学学报,2018,47(1):81-87.
    [9]
    牟宗龙,王浩,彭蓬,等.岩-煤-岩组合体破坏特征及冲击倾向性试验研究[J].采矿与安全工程学报,2013(6): 841-847.
    [10]
    高宇.煤岩组合体冲击破坏试验研究[D].湘潭:湖南科技大学,2017.
    [11]
    王学滨.煤岩两体模型变形破坏数值模拟[J].岩土力学,2006(7):1066-1070.
    [12]
    张子山.煤岩组合体裂纹演化特征研究[C]北京力学会第二十四届学术年会会议论文集.北京:北京力学会,2018:2.
    [13]
    张泽天,刘建锋,王璐,等.组合方式对煤岩组合体力学特性和破坏特征影响的试验研究[J].煤炭学报,2012(10):1677-1681.
    [14]
    秦忠诚,陈光波,秦琼杰.组合方式对煤岩组合体力学特性和冲击倾向性影响实验研究[J].西安科技大学学报,2017,37(5):655-661.
    [15]
    兰永伟,张国华,刘洪磊,等.不同组合条件下煤岩组合体的力学特性[J].黑龙江科技大学学报,2018,28(2):136-141.
    [16]
    左建平,谢和平,吴爱民,等.深部煤岩单体及组合体的破坏机制与力学特性研究[J].岩石力学与工程学报,2011,30(1):84-92.
    [17]
    赵毅鑫,姜耀东,祝捷,等.煤岩组合体变形破坏前兆信息的试验研究[J].岩石力学与工程学报,2008(2):339-346.
    [18]
    聂鑫,周安朝.煤岩高度比对组合体力学特性影响的数值分析[J].煤炭技术,2018,37(3):102-104.
  • Related Articles

    [1]ZHAI Peihe, REN Keke, ZHANG Zhao, LIU Yuxiang. Three-dimensional electrical method advanced detection technology based on comparative method to eliminate the influence of roadway[J]. Safety in Coal Mines, 2021, 52(7): 67-71,78.
    [2]ZHOU Wenqiang, WANG Junfeng, ZHOU Chunshan, ZHOU Bin. Technology of Detecting Spontaneous Combustion Source in Goaf of Coal Mine by Isotopic Measurement of Polonium[J]. Safety in Coal Mines, 2019, 50(10): 84-87.
    [3]WANG Enying, LI Rui, LIU Yangguang, WANG Hongwei, LI Peitao, LIU Shanqing. Analysis of Apparent Resistivity Response on Water and Gas in Low Resistivity Zone by Underground DC Advance Method[J]. Safety in Coal Mines, 2018, 49(3): 168-171.
    [4]LIU Zhizhong, WANG Wei. Application of Instantaneous Measurement of Radon in the Detection of Hidden Fire Sources in Small Coal Pits[J]. Safety in Coal Mines, 2017, 48(7): 148-150,154.
    [5]LIU Bo, ZHANG Xinjun, WANG Xing. Application of Radon Measurement in Blind Fault Detection of Low Radioactive Area[J]. Safety in Coal Mines, 2015, 46(5): 156-159.
    [6]LIANG Shuang. Application of Pole-dipole Array Resistivity Method[J]. Safety in Coal Mines, 2015, 46(4): 215-218.
    [7]DENG Jun, ZHAO Xiao-xia, JIN Yong-fei, SU Kai. Using Ground Radon Measurement Method to Detect Old Kiln Fire Zone[J]. Safety in Coal Mines, 2012, 43(11): 130-132,133.
    [8]SHAO Zhen-Lu, WANG De-Ming, WANG Yan-Ming. Research Progress of Coalfield Fire Detection Method[J]. Safety in Coal Mines, 2012, 43(8): 189-192.
    [9]LI Fei, CHENG Jiu-long, TAN Qiang, LI Ming-xing, ZHENG Gong, WANG Sheng-long. Study on Advanced Detection by Resistivity Method in Roadway Excavation[J]. Safety in Coal Mines, 2012, 43(7): 30-34.
    [10]SHI Xue-feng, HAN De-pin. The Application of DC Resistivity Method in Coal Mine Tunnel Advanced Exploration[J]. Safety in Coal Mines, 2012, 43(5): 104-107.
  • Cited by

    Periodical cited type(8)

    1. 范立民. 神府煤田勘查开发的地质科技创新与贡献. 煤田地质与勘探. 2025(03): 1-22 .
    2. 高亮,韩强,方刚. 柠条塔煤矿工作面顶板烧变岩水害防治技术应用. 陕西煤炭. 2024(08): 112-118 .
    3. 李明,李乃新,刘丁宿,张力杰,王俊磊. 断层带附近巷道顶板淋水化学注浆治理技术. 能源技术与管理. 2023(01): 1-3 .
    4. 刘超,祁赟朴,宋章伦,王亮,张帅,董福松. 淋水巷道帮壁稳定性分析与治理措施研究. 现代矿业. 2023(04): 159-162 .
    5. 郑凯凯,吴现帅,钱自卫. 巷道破碎顶板多点渗淋水多层次注浆治理技术. 煤炭科技. 2022(04): 168-172 .
    6. 窦凤金,邵栋梁,王方田. 富含水层工作面俯采防治水关键技术. 煤矿安全. 2021(11): 88-94 . 本站查看
    7. 杨帆,姬中奎,薛小渊,张池,任智智,罗安昆,杨柳,高幸,常宝天. 浅埋煤层巷道过沟探查及治理技术. 煤矿安全. 2021(12): 115-120 . 本站查看
    8. 李斐斐. 化学高分子材料在煤矿井巷淋水治理中的应用研究. 石化技术. 2020(12): 295-296 .

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (0) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return