Citation: | GUAN Jinfeng, CUI Hongqing, WANG Yuting. Prediction Method for Principal Stress Direction of In-situ Stress Field Based on Deformation and Failure Characteristics of Surrounding Rock in Coal Mine[J]. Safety in Coal Mines, 2017, 48(5): 202-205. |
[1] |
孟召平,侯泉林.高煤级煤储层渗透性与应力耦合模型及控制机理[J].地球物理学报,2013,56 (2):667.
|
[2] |
Paul Suman,Chatterjee Rima. Determination of in-situ stress direction from cleat orientation mapping for coal bed methane exploration in south-eastern part of Jharia coalfield, India[J].International Journal of Coal Geology,2011,87(2): 87-96.
|
[3] |
唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011(1):65-69.
|
[4] |
康红普,颜立新,张剑.汾西矿区地应力测试与分析[J].采矿与安全工程学报,2009(3):263-268.
|
[5] |
祁和刚,周钢.空心包体地应力测量技术研究与应用[J].煤矿安全,2016(12):141-144.
|
[6] |
蔡美峰,陈长臻,彭华,等.万福煤矿深部水压致裂地应力测量[J].岩石力学与工程学报,2006 (5):1069.
|
[7] |
康红普,吴志刚,高富强,等.煤矿井下地质构造对地应力分布的影响[J].岩石力学与工程学报,2012,31 (S1):2674-2680.
|
[8] |
Kang H,Zhang X,Si L,et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J].Engineering Geology,2010,116 (3/4):333-345.
|
[9] |
秦丽杰.古汉山矿现代构造应力场研究[D].焦作:河南理工大学,2014.
|
[10] |
Hudson John A,Harrison John P. Rock stress, rock strengths and spalling prediction[C]//Controlling Seismic Hazard and Sustainable Development of Deep Mines (Volume 1). 2009.
|
[11] |
康红普.煤岩体地质力学原位测试及在围岩控制中的应用[M].北京:科学出版社,2013.
|
[12] |
彭赐灯.煤矿围岩控制[M].北京:科学出版社, 2014.
|
[13] |
Coggan John, Gao Fuqiang,Stead Doug, et al. Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability[J].International Journal of Coal Geology,2012, S90/91(1): 100-109.
|
[14] |
Esterhuizen G S, Dolinar D R,Iannacchione A T. Field observations and numerical studies of horizontal stress effects on roof stability in US limestone mines[J]. Journal of the Southern African Institute of Mining & Metallurgy, 2008, 108 (6): 345-352.
|
[15] |
赵兴东,王述红,贾明魁,等.古汉山矿软岩巷道地质因素分析[J].煤田地质与勘探,2005,33(1):44-45.
|
[1] | REN Jianxi, YI Gui, CHEN Xu, CAO Xitailang. Experimental study on creep failure mechanism of artificially frozen sandstone of Luohe Formation after thawing[J]. Safety in Coal Mines, 2022, 53(7): 74-81. |
[2] | WANG Heng, GUO Junhua. Application of C100 high performance concrete in freezing shaft wall[J]. Safety in Coal Mines, 2021, 52(9): 122-128. |
[3] | WANG Xiaoyun, YAO Zhishu, JI Wenjie, HUANG Xianwen, MENG Xiangqian. Optimization of three-circle pipe layout for freezing shaft sinking based on combined weighting-grey correlation method[J]. Safety in Coal Mines, 2021, 52(8): 218-225. |
[4] | LI Huaixin, LIN Bin, FAN Dengzheng. Uniaxial Compressive Strength Test on Artificially Frozen Clay[J]. Safety in Coal Mines, 2020, 51(7): 55-60. |
[5] | LIU Wei, ZHANG Futao, LIU Limin. Analysis of Freezing Characteristics and Compressive Strength of Weathered Rock Mass in Northwest China[J]. Safety in Coal Mines, 2019, 50(11): 216-219. |
[6] | WANG Mingzhi, CHEN Xian, LI Zhongsen, CHE Faming. Key Technologies for Fast Construction of Freezing Deep Vertical Shaft[J]. Safety in Coal Mines, 2019, 50(7): 100-102,107. |
[7] | TIAN Yingguo, YANG Gengshe, LI Borong, ZHENG Xuanrong. Interaction of Freezing Shaft "Two-wall" in Cretaceous Strata[J]. Safety in Coal Mines, 2015, 46(12): 42-45. |
[8] | LI Borong, YANG Gengshe, XI Jiami, CHEN Xinnian. Pressure Field and Tempreture Field Monitoring of Shaft Wall by Freezing Shaft Sinking in Rich Water and Soft Rock[J]. Safety in Coal Mines, 2015, 46(5): 58-62. |
[9] | FANG Shi-yu, YUE Feng-tian, SHI Rong-jian, LIU Ping, ZHANG Hao-bei. Application of Liquid Nitrogen Freezing Method on Sealing Water of Pipelining Formation in Inclined Shaft[J]. Safety in Coal Mines, 2013, 44(4): 165-167. |
[10] | ZHAO Qiang, WU Guang-hui. The Mechanism and Control Technology of Thawing Water Disaster Caused by the Bedrock Freezing Construction[J]. Safety in Coal Mines, 2013, 44(4): 91-93. |