HE Yongliang. Early-warning and soft structure prevention technology of rock burst risk based on multi-source information fusion[J]. Safety in Coal Mines, 2023, 54(7): 78-84.
    Citation: HE Yongliang. Early-warning and soft structure prevention technology of rock burst risk based on multi-source information fusion[J]. Safety in Coal Mines, 2023, 54(7): 78-84.

    Early-warning and soft structure prevention technology of rock burst risk based on multi-source information fusion

    More Information
    • Available Online: August 30, 2023
    • Aiming at the problems of large discreteness of early warning results and prediction positions of rock burst, a multi-source information fusion early warning technology is studied, and a multi-source information fusion depth prediction model based on machine learning algorithm is established. Through the analysis of rock burst events, the main causes, characteristics and influencing factors of rock burst accidents are analyzed. Taking the compressive strength, tensile strength, elastic energy and ground stress of coal and rock as the main indicators of rock burst prediction, the depth neural grid prediction model is established to determine the weight of different prediction indicators. Through big data analysis and limited data, the occurrence of rock burst is predicted. Taking the occurrence of rock burst is predicted. Taking a coal mine in Shaanxi Province as an example, the depth neural network model is verified, and the effectiveness and correctness of the prediction model of rock burst are verified through field measurement.
    • [1] 朱建波,马斌文,谢和平,等.煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J].煤炭学报,2022,47(9):3396-3409. ZHU Jianbo, MA Binwen, XIE Heping, et al. Differences and connections between mining seismicity and coal bursts in coal mines and preliminary study on coal bursts induced by mining seismicity[J]. Journal of China Coal Society, 2022, 47(9): 3396-3409. [2] 钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1):1-6. QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6. [3] 王桂峰,刘阳,曹安业,等.冲击地压的三参量能量致冲准则及多场监测预警和动态防治技术[J].采矿与安全工程学报,2021,38(5):895-901. WANG Guifeng, LIU Yang, CAO Anye, et al. Rock burst energy criterion with three parameters and multi-field monitoring, early warning, and dynamic control and prevention[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 895-901. [4] 何生全,何学秋,宋大钊,等.冲击地压多参量集成预警模型及智能判识云平台[J].中国矿业大学学报,2022,51(5):850-862. HE Shengquan, HE Xueqiu, SONG Dazhao, et al. Multi-parameter integrated early warning model and an intelligent identification cloud platform of rockburst[J]. Journal of China University of Mining & Technology, 2022, 51(5): 850-862. [5] 王世斌,侯恩科,王双明,等.煤炭安全智能开采地质保障系统软件开发与应用[J].煤炭科学技术,2022, 50(7):13-24. WANG Shibin, HOU Enke, WANG Shuangming, et al. Development and application of geological guarantee system software for safe and intelligent coal mining[J]. Coal Science and Technology, 2022, 50(7): 13-24. [6] 裴艳宇,杨小彬,传金平,等.一维卷积神经网络特征提取下微震能级时序预测[J].工程科学学报,2021, 43(7):1003-1009. PEI Yanyu, YANG Xiaobin, CHUAN Jinping, et al. Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 1003-1009. [7] 孙继平,余星辰.基于声音识别的煤矿重特大事故报警方法研究[J].工矿自动化,2021,47(2):1-5. SUN Jiping, YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation, 2021, 47(2): 1-5. [8] 陈结,高靖宽,蒲源源,等.冲击地压预测预警的机器学习方法[J].采矿与岩层控制工程学报,2021,3(1):53-64. CHEN Jie, GAO Jingkuan, PU Yuanyuan, et al. Machine learning method for predicting and warning of rockbursts[J]. Journal of Mining and Strata Control Engineering, 2021, 3(1): 53-64. [9] 祁和刚,夏永学,陆闯,等.冲击地压矿井智能化防冲控采技术的思考[J].煤炭科学技术,2022,50(1):151-158. QI Hegang, XIA Yongxue, LU Chuang, et al. Thinkingabout intelligent technology of rockburst prevention and controlled mining in rockburst mine[J]. Coal Science and Technology, 2022, 50(1): 151-158. [10] 齐庆新,李海涛,李晓鹏.煤矿冲击危险性的定性与定量评价研究[J].煤炭科学技术,2021,49(4):12 -19. QI Qingxin, LI Haitao, LI Xiaopeng. Qualitative and quantitative evaluation of impact risk in underground mine[J]. Coal Science and Technology, 2021, 49(4): 12-19. [11] 魏立科,姜德义,王翀,等.煤矿冲击地压灾害风险监察智能分析系统关键技术架构[J].煤炭学报,2021, 46(S1):63-73. WEI Like, JIANG Deyi, WANG Chong, et al. Key technological architecture of the intelligent monitoring-analysissystem for coal mine rockburst risk supervision[J]. Journal of China Coal Society, 2021, 46(S1): 63 -73. [12] GONG Fengqiang, LI Xibing, ZHANG Wei. Rockburst prediction of underground engineering based on Bayes discriminant analysis method[J]. 2010, 31(S1): 370-377. [13] PU Y Y, APELD B, LINGGAB. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J]. Tunnelling and Underground Space Technol, 2019(90): 12-18. [14] 贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2):343-348. JIA Yipeng, LV Qing, SHANG Yuequan. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 343-348. [15] SHIRANI Faradonbeh R, Taheri A. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques[J]. Engineering with Computers, 2019, 35: 659-675. [16] 宫凤强,赵英杰,王云亮,等.煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J].煤炭学报,2022,47(5):1974-2010. GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5): 1974-2010. [17] 王爱文,王岗,代连朋,等.基于临界应力指数法巷道冲击地压危险性评价[J].煤炭学报,2020,45(5):1626-1634. WANG Aiwen, WANG Gang, DAI Lianpeng, et al. Evaluation on the rock burst risks of roadway using critical stress index method[J]. Journal of China Coal Society, 2020, 45(5): 1626-163 [18] 朱馨,李建微,郭伟,等.基于机器学习的森林火险预测模型[J].中国安全科学学报,2022,32(9):152-157. ZHU Xin, LI Jianwei, GUO Wei, et al. Forest fire risk prediction model based on machine learning[J]. China Safety Science Journal, 2022, 32(9): 152-157. [19] 张凯,张科,李昆.主元分析-神经网络岩爆等级预测模型[J].中国安全科学学报,2021,31(3):96-104. ZHANG Kai, ZHANG Ke, LI Kun. Prediction model of rockburst grade based on PCA-neural network[J]. China Safety Science Journal, 2021, 31(3): 96-104. [20] 王爱文,王岗,代连朋,等.基于临界应力指数法巷道冲击地压危险性评价[J].煤炭学报,2020,45(5):1626-1634. WANG Aiwen, WANG Gang, DAI Lianpeng, et al. Evaluation on the rock burst risks of roadway using critical stress index method[J]. Journal of China Coal Society, 2020, 45(5): 1626-163. [21] 齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020, 45(5):1567-1584. QI Qingxin, PAN Yishan, LI Haitao, et al. Theoretical basis and key technology of prevention and control of coal-rockdynamic disasters in deep coal mining[J]. Journal of China Coal Society, 2020, 45(5): 1567-1584. [22] 高明仕,贺永亮,陆菜平,等.巷道内强主动支护与弱结构卸压防冲协调机制[J].煤炭学报,2020,45(8):2749-2759. GAO Mingshi, HE Yongliang, LU Caiping, et al. Coordination mechanism of internal strong active support,soft structurepressure relief and anti-punching of roadway[J]. Journal of China Coal Society, 2020, 45(8): 2749-2759. [23] 高明仕,赵一超,温颖远,等.震源扰动型巷道冲击矿压破坏力能准则及实践[J].煤炭学报,2016,41(4):808-814. GAO Mingshi, ZHAO Yichao, WEN Yingyuan, et al. Stress and energy criterion of the roadway destruction subjected to disturbance type rockburst and its practice[J]. Journal of China Coal Society, 2016, 41(4): 808-814.
    • Related Articles

      [1]QIAO Meiying, SHI Youqiang. Prediction of rock burst hazard level based on index information fusion[J]. Safety in Coal Mines, 2025, 56(2): 118-125. DOI: 10.13347/j.cnki.mkaq.20240242
      [2]Construction of mine intelligent ventilation and prevention system and information platform for Zhuanlongwan Coal Mine[J]. Safety in Coal Mines, 2022, 53(9): 212-220.
      [3]WEN Hu, TANG Rui, LIU Mingyang, WANG Hu, ZHANG Duo, ZHENG Xuezhao, FAN Shixing, CHENG Xiaojiao, JIN Yongfei. Application of Mine life information detector in accident rescue[J]. Safety in Coal Mines, 2022, 53(4): 162-166.
      [4]FENG Wenbin, LI Shunan, TIAN Hao, YANG Xin, MA Chao, YU Chongchong. Images semantic segmentation method based on fusion edge optimization[J]. Safety in Coal Mines, 2022, 53(2): 136-141.
      [5]LIANG Xiaokang, CUI Enwei, WEI Yinshang. Research on coal mine worker safety information management based on block chain technology[J]. Safety in Coal Mines, 2021, 52(2): 235-238.
      [6]LIU Jinglong, WANG Yunjia, YAN Shiyong, DANG Libo, FENG Fang, LI Yi. Multi-source Remote Sensing Fusion Detection of Coal Fire in Eastern Urumchi[J]. Safety in Coal Mines, 2019, 50(8): 158-161.
      [7]ZHANG Baodong. Application of Multi-source Information Fusion and Knowledge Discovery in Coal Mine Gas Monitoring[J]. Safety in Coal Mines, 2017, 48(5): 137-139,143.
      [8]LIU Zhanqian, CHEN Quan. Establishment of Coal Mine Enterprise Safety Risk Information System[J]. Safety in Coal Mines, 2015, 46(1): 227-229.
      [9]DI Zhiqiang. Prediction Method of Gas Emission Based on Multi-source Information Fusion[J]. Safety in Coal Mines, 2014, 45(8): 172-174,178.
      [10]GAO Rong-bin, DENG Teng-lin, YAN Ming, ZHANG Dong-ying. Risk Assessment of Floor Water Inrush in Xin'an Coal Mine Based on Multi-source Information Fusion[J]. Safety in Coal Mines, 2013, 44(9): 201-204.
    • Cited by

      Periodical cited type(2)

      1. 杨森忠. 软岩巷道锚杆锚固性能试验分析. 内蒙古煤炭经济. 2024(02): 58-60 .
      2. 高丹,岳中文,王鹏,岳小磊,闫逸飞,周星源,李杨. 锚固钻孔软弱夹层结构特征智能识别方法. 煤田地质与勘探. 2024(11): 200-210 .

      Other cited types(0)

    Catalog

      Article views (25) PDF downloads (24) Cited by(2)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return