• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Ting, NIE Baisheng, ZHANG Zhehao, et al. Study on shock wave characteristics of rock fracturing process induced by high-intensity electric detonation with voltage as variable[J]. Safety in Coal Mines, 2025, 56(3): 21−31. DOI: 10.13347/j.cnki.mkaq.20240856
Citation: WANG Ting, NIE Baisheng, ZHANG Zhehao, et al. Study on shock wave characteristics of rock fracturing process induced by high-intensity electric detonation with voltage as variable[J]. Safety in Coal Mines, 2025, 56(3): 21−31. DOI: 10.13347/j.cnki.mkaq.20240856

Study on shock wave characteristics of rock fracturing process induced by high-intensity electric detonation with voltage as variable

More Information
  • Received Date: June 06, 2024
  • Revised Date: June 27, 2024
  • High strength electric detonation is a new type of fracturing technology that can efficiently reconstruct coal and rock layers structure, improve the efficiency of coalbed methane mining, increase the proportion of clean energy, and help achieve the “dual carbon” goal; the shock wave energy characteristics of Changqing rock induced by high intensity electric detonation under 16 kV and 204 μF conditions were studied by changing the voltage. The experimental results show that the increase of voltage leads to a decrease in the wavefront time of the voltage curve, and the decrease rate decreases with the increase of voltage, which leads to the increase of the amplitude of voltage wave pattern and the discharge power of high-strength electric detonation, and the increase of shock wave intensity; the direction of maximum shock wave vibration velocity is horizontally from the inner surface of the rock to the outer surface of the rock, which is the main propagation direction of vibration; the main frequency of the vibration energy of shock wave is 0-10 Hz, and the energy is mainly distributed in the range of 0-1 000 Hz; the increase in voltage increases the peak amplitude of the shock wave spectrum and the peak particle velocity of the vibration curve. The increase of voltage makes the shock wave produce stronger instantaneous force, and accelerates the transformation of rock internal structure to instability.

  • [1]
    孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13.

    SUN Haitao, SHU Longyong, JIANG Zaibing, et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology, 2022, 50(12): 1−13.
    [2]
    杨长鑫,杨兆中,李小刚,等. 中国煤层气地面井开采储层改造技术现状与展望[J]. 天然气工业,2022,42(6):154−162. doi: 10.3787/j.issn.1000-0976.2022.06.013

    YANG Changxin, YANG Zhaozhong, LI Xiaogang, et al. Status and prospect of reservoir stimulation technologies for CBM surface well production in China[J]. Natural Gas Industry, 2022, 42(6): 154−162. doi: 10.3787/j.issn.1000-0976.2022.06.013
    [3]
    秦勇. 中国深部煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811. doi: 10.7623/syxb202311004

    QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791−1811. doi: 10.7623/syxb202311004
    [4]
    龚斌,王虹雅,王红娜,等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报,2023,44(11):1949−1958. doi: 10.7623/syxb202311015

    GONG Bin, WANG Hongya, WANG Hongna, et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica, 2023, 44(11): 1949−1958. doi: 10.7623/syxb202311015
    [5]
    李丹,苏现波. 煤与煤层气资源开发全过程阶段划分及其开发效果评价[J]. 煤炭科学技术,2023,51(3):137−147.

    LI Dan, SU Xianbo. Stage division and development effect evaluation of whole process of coal and coalbed methane resources development[J]. Coal Science and Technology, 2023, 51(3): 137−147.
    [6]
    鲍先凯,杨东伟,段东明,等. 高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J]. 岩石力学与工程学报,2017,36(10):2415−2423.

    BAO Xiankai, YANG Dongwei, DUAN Dongming, et al. The experiment and numerical simulation of penetration of coalbed methane upon hydraulic fracturing under high-voltage electric pulse[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2415−2423.
    [7]
    周盛涛,罗学东,蒋楠,等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报,2021,43(7):883−893.

    ZHOU Shengtao, LUO Xuedong, JIANG Nan, et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883−893.
    [8]
    付德亮,段中会,杨甫,等. 富油煤钻井式地下原位热解提取煤基油气资源的几个关键问题[J]. 煤炭学报,2023,48(4):1759−1772.

    FU Deliang, DUAN Zhonghui, YANG Fu, et al. Key problems in in-situ pyrolysis of tar-rich coal drilling for extraction of coal-based oil and gas resources[J]. Journal of China Coal Society, 2023, 48(4): 1759−1772.
    [9]
    吕令锋,王祝. 欠平衡钻井的优缺点分析及井控特征探讨[J]. 石化技术,2018,25(6):27. doi: 10.3969/j.issn.1006-0235.2018.06.018

    LV Lingfeng, WANG Zhu. Analysis of advantages and disadvantages of underbalanced drilling and discussion on well control characteristics[J]. Petrochemical Industry Technology, 2018, 25(6): 27. doi: 10.3969/j.issn.1006-0235.2018.06.018
    [10]
    刘伟吉,张有建,祝效华,等. 影响高压电脉冲破岩效率的关键因素分析[J]. 天然气工业,2023,43(10):112−124. doi: 10.3787/j.issn.1000-0976.2023.10.012

    LIU Weiji, ZHANG Youjian, ZHU Xiaohua, et al. Key factors influencing rock breaking efficiency of high voltage electric pulse[J]. Natural Gas Industry, 2023, 43(10): 112−124. doi: 10.3787/j.issn.1000-0976.2023.10.012
    [11]
    郭军,米鑫程,冯国瑞,等. 基于液电效应的高压电脉冲岩体致裂特征及机理研究[J]. 煤炭学报,2024,49(5):2270−2282.

    GUO Jun, MI Xincheng, FENG Guorui, et al. Characteristics and mechanism of rock fracturing caused by high voltage electric pulse rock mass based on electrohydraulic effect[J]. Journal of China Coal Society, 2024, 49(5): 2270−2282.
    [12]
    卢红奇,聂百胜,陈秀娟,等. 基于液电效应的高压电脉冲对煤体致裂实验研究[J]. 中国安全生产科学技术,2020,16(10):83−88.

    LU Hongqi, NIE Baisheng, CHEN Xiujuan, et al. Experimental research on coal crushing by using high-voltage electrical pulse based on electrohydraulic effect[J]. Journal of Safety Science and Technology, 2020, 16(10): 83−88.
    [13]
    李元,孙滢,刘毅,等. 液电效应及电火花震源的研究现状与展望[J]. 高电压技术,2021,47(3):753−765.

    LI Yuan, SUN Ying, LIU Yi, et al. Electrohydraulic effect and sparker source: Current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 753−765.
    [14]
    张祥良,林柏泉,李彦君,等. 煤体电破碎过程中的电压与电流波形特性[J]. 中国矿业大学学报,2020,49(6):1077−1084.

    ZHANG Xiangliang, LIN Baiquan, LI Yanjun, et al. Waveform characteristics of voltage and current in coal fracturing process based on electrical fragmentation[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1077−1084.
    [15]
    鲍先凯,刘源,郭军宇,等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报,2020,39(4):715−725.

    BAO Xiankai, LIU Yuan, GUO Junyu, et al. Quantitative evaluation of fracturing effect of coal-rock masses under high-voltage discharge actions in water[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 715−725.
    [16]
    于海军,乔德民,张秀峰,等. 元素录井技术在长庆油田岩性识别中的应用[J]. 中外能源,2021,26(S1):90−95.

    YU Haijun, QIAO Demin, ZHANG Xufeng, et al. Application of element logging technology in lithology identification in Changqing Oilfield[J]. Sino-Global Energy, 2021, 26(S1): 90−95.
    [17]
    王亮亮. L20型爆破测振仪在露天矿控制爆破中的应用[J]. 露天采矿技术,2013,28(7):22−23. doi: 10.3969/j.issn.1671-9816.2013.07.008

    WANG Liangliang. Application of L20 blasting vibration meter in surface coal mine controlled blasting[J]. Opencast Mining Technology, 2013, 28(7): 22−23. doi: 10.3969/j.issn.1671-9816.2013.07.008
    [18]
    吴贤振,游勋,冯锐,等. 用综合系数法评价爆破震动作用下巷道稳定性[J]. 矿业研究与开发,2011,31(3):72−75.

    WU Xianzhen, YOU Xun, FENG Rui, et al. Evaluation of tunnel’s stability under blasting vibration using comprehensive coefficient method[J]. Mining Research and Development, 2011, 31(3): 72−75.
    [19]
    周章涛,刘建湖,刘国振,等. 水下爆炸空化研究进展[J]. 装备环境工程,2023,20(9):12−25.

    ZHOU Zhangtao, LIU Jianhu, LIU Guozhen, et al. Research progress of underwater explosion cavitation[J]. Equipment Environmental Engineering, 2023, 20(9): 12−25.
    [20]
    周辉奎,顾牡丹. 自适应加权直方图均衡化的红外图像增强[J]. 光学技术,2023,49(6):750−755.

    ZHOU Huikui, GU Mudan. Infrared image enhancement based on adaptive weighted histogram equalization[J]. Optical Technique, 2023, 49(6): 750−755.
    [21]
    郑欢欢,冯治东,李瑞华. 基于sobel算子的道路图像边缘检测算法[J]. 榆林学院学报,2023,33(2):60−63.

    ZHENG Huanhuan, FENG Zhidong, LI Ruihua. Edge detection algorithm of road image based on sobel operator[J]. Journal of Yulin University, 2023, 33(2): 60−63.
    [22]
    吕帅锋,王生维,刘洪太,等. 煤储层天然裂隙系统对水力压裂裂缝扩展形态的影响分析[J]. 煤炭学报,2020,45(7):2590−2601.

    LYU Shuaifeng, WANG Shengwei, LIU Hongtai, et al. Analysis of the influence of natural fracture system on hydraulic fracture propagation morphology in coal reservoir[J]. Journal of China Coal Society, 2020, 45(7): 2590−2601.
    [23]
    赵乐源,王红星,陆发平,等. 一种基于多窗宽度STFT的PSWFs信号时频分析方法[J]. 无线电通信技术,2022,48(1):165−172. doi: 10.3969/j.issn.1003-3114.2022.01.021

    ZHAO Leyuan, WANG Hongxing, LU Faping, et al. A time-frequency analysis method of PSWFs based on multi-window width STFT[J]. Radio Communications Technology, 2022, 48(1): 165−172. doi: 10.3969/j.issn.1003-3114.2022.01.021
    [24]
    李显东,何桦,肖天飞,等. 水中超长脉冲放电的预击穿过程研究[J]. 中国电机工程学报,2021,41(17):6100−6107.

    LI Xiandong, HE Hua, XIAO Tianfei, et al. Study on pre-breakdown process of underwater ultra-long discharge[J]. Proceedings of the CSEE, 2021, 41(17): 6100−6107.
    [25]
    郑双林,马英强,郭鑫捷,等. 预处理技术在难选氧化铜矿硫化浮选中应用的研究进展[J]. 金属矿山,2021(4):130−138.

    ZHENG Shuanglin, MA Yingqiang, GUO Xinjie, et al. Research progress on application of pre-treatment technology on sulfurizing flotation of refractory copper-oxide ore[J]. Metal Mine, 2021(4): 130−138.
    [26]
    张金笑,张聪,仝世伟,等. 高压电脉冲技术在煤层气低产井改造效果分析[J]. 中国煤层气,2022,19(5):3−8. doi: 10.3969/j.issn.1672-3074.2022.05.001

    ZHANG Jinxiao, ZHANG Cong, TONG Shiwei, et al. Effect analysis of high-voltage electric pulse technology on reformation of low-production coalbed methane wells[J]. China Coalbed Methane, 2022, 19(5): 3−8. doi: 10.3969/j.issn.1672-3074.2022.05.001
  • Related Articles

    [1]BAO Xiankai, JIANG Bin, WU Ning, CUI Guangqin, YU Chaoyun, ZHANG Tong, ZHANG Xiaofan. Study on stress distribution and prefabricated crack propagation law of shale under high voltage electric pulse load in water[J]. Safety in Coal Mines, 2025, 56(3): 54-65. DOI: 10.13347/j.cnki.mkaq.20231250
    [2]LEI Ruide, SU Luo, HU Chao, LI Jun, ZHOU Linsen, HUANG Ling, GU Qingheng. Study on microcrack propagation and evolution of fractured coal-rock based on mineral particle model[J]. Safety in Coal Mines, 2024, 55(11): 154-165. DOI: 10.13347/j.cnki.mkaq.20230961
    [3]WANG Xueqing, ZHAO Yunmeng, FENG Ying, WANG Zhuangzhuang, LI Yongchao, CHEN Bo, DONG Ze, WU Shuaijun. Simulation of cracks propagation and fractal characteristics of composite rock strata with holes and fractures[J]. Safety in Coal Mines, 2024, 55(1): 42-49. DOI: 10.13347/j.cnki.mkaq.20221467
    [4]XU Xuefeng, SHI Pengke. Research of stress wave and crack propagation superposition effect of double-hole blasting in coal and rock mass[J]. Safety in Coal Mines, 2023, 54(10): 100-106. DOI: 10.13347/j.cnki.mkaq.2023.10.014
    [5]Mechanism of upward mixed crack propagation in long wall working face[J]. Safety in Coal Mines, 2021, 52(12): 188-193.
    [6]FAN Guowei, SUN Zhuang, SHANG Junning. Effect of loading mode and impact velocity on crack propagation of coal[J]. Safety in Coal Mines, 2021, 52(4): 45-51.
    [7]RAN Xingshi. Crack Propagation Mechanism of Water Injection in Anisotropic Coal Seam[J]. Safety in Coal Mines, 2020, 51(8): 188-192.
    [8]LIU Kang, GUO Dongming, ZHANG Shuai, SHI Zhenxin, CHEN Jin. Propagation Law of Cracks in Surrounding Rock of Different Shape Tunnels Under Adjacent Blasting[J]. Safety in Coal Mines, 2020, 51(4): 66-71.
    [9]XIE Tiancheng, LIU Hongyan. Simulation Study of Crack Propagation in Rock Mass with Arc Cracks[J]. Safety in Coal Mines, 2019, 50(7): 228-233.
    [10]MA Hongxing, ZHAO Yuechao, WANG Xinyan, XIE Beijing. Experiment on Cracks Dynamic Propagation Characteristics of Bedding Raw Coal in Static Blasting Damage[J]. Safety in Coal Mines, 2016, 47(8): 16-18,22.
  • Cited by

    Periodical cited type(3)

    1. 程士宜. 不同温度-冲击载荷下煤的渗透率演化规律研究. 煤矿安全. 2024(08): 43-50 . 本站查看
    2. 康俊强,简阔,傅雪海,申建,王一兵,段超超. 急倾斜煤储层水力压裂裂缝扩展研究. 煤矿安全. 2024(11): 49-60 . 本站查看
    3. 熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 .

    Other cited types(0)

Catalog

    Article views (29) PDF downloads (9) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return