FAN Mingjin, CHEN Juntao, GU Hailong, et al. Experimental study on grouting reinforcement characteristics of groutable fault fracture zone in western mining area[J]. Safety in Coal Mines, 2025, 56(1): 155−163. DOI: 10.13347/j.cnki.mkaq.20240501
    Citation: FAN Mingjin, CHEN Juntao, GU Hailong, et al. Experimental study on grouting reinforcement characteristics of groutable fault fracture zone in western mining area[J]. Safety in Coal Mines, 2025, 56(1): 155−163. DOI: 10.13347/j.cnki.mkaq.20240501

    Experimental study on grouting reinforcement characteristics of groutable fault fracture zone in western mining area

    More Information
    • Received Date: February 27, 2024
    • Revised Date: May 18, 2024
    • Grouting transformation of aquifer is the most direct and effective means to control sandstone water disasters in western mining areas. In order to explore the influence of different factors on the grouting reinforcement characteristics of groutable fault fracture zone in western mining area, we design groutability test, uniaxial compressive strength test and permeability test to study the influence law and results of different factors on groutability and grouting reinforcement effect under the premise of complete groutability. The results show that when the water cement ratio is 1.5∶1, the strength of grouting reinforcement has reached the standard of field application, and the impermeability effect is almost the same and good as that when the water cement ratio is 1∶1. When the curing age is 14 d, the strength of grouting reinforcement under the two conditions of water cement ratio of 1∶1 and 1.5∶1 reaches the standard of field application, and the impermeability effect is almost the same and good as that when the curing age is 28 d. According to the research conclusions and field practice, the slurry with a water-cement ratio of 1.5∶1 was selected and applied to the grouting project. After grouting, the water absorption rate of each borehole was not greater than the critical value of 0.01 L/(min·m·m), and the grouting amount decreased from an average of 1 317.81 t to an average of 80.2 t. The grouting effect is obvious and good, which provides a guarantee for the safe mining of the mine and the ecological protection of water resources in the western mining area.

    • [1]
      曾一凡,刘晓秀,武强,等. 双碳背景下“煤−水−热”正效协同共采理论与技术构想[J]. 煤炭学报,2023,48(2):538−550.

      ZENG Yifan, LIU Xiaoxiu, WU Qiang, et al. Theory and technical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China Coal Society, 2023, 48(2): 538−550.
      [2]
      葛世荣,樊静丽,刘淑琴,等. 低碳化现代煤基能源技术体系及开发战略[J]. 煤炭学报,2024,49(1):203−223.

      GE Shirong, FAN Jingli, LIU Shuqin, et al. Low carbon modern coal-based energy technology systemand development strategy[J]. Journal of China Coal Society, 2024, 49(1): 203−223.
      [3]
      谢道雷,苗田雨,韩承豪,等. 西部矿区深埋厚煤层采动覆岩离层发育规律数值模拟研究[J]. 煤矿安全,2024,55(4):204−212.

      XIE Daolei, MIAO Tianyu, HAN Chenghao, et al. Numerical simulation study on development law of mining-induced overburden separation layer in deep and thick coal seam in western mining area[J]. Safety in Coal Mines, 2024, 55(4): 204−212.
      [4]
      姜春露,黄文迪,傅先杰,等. 淮南阜东矿区二叠系砂岩高盐地下水低硫酸盐特征及成因机制[J]. 煤田地质与勘探,2023,51(11):74−82. doi: 10.12363/issn.1001-1986.23.04.0177

      JIANG Chunlu, HUANG Wendi, FU Xianjie, et al. Characteristics and genetic mechanism of low sulfate in high-salt groundwater of Permian sandstone in Fudong mining area, Huainan[J]. Coal Geology & Exploration, 2023, 51(11): 74−82. doi: 10.12363/issn.1001-1986.23.04.0177
      [5]
      王佟,刘峰,赵欣,等. “双碳”背景下我国煤炭资源保障能力与勘查方向的思考[J]. 煤炭科学技术,2023,51(12):1−8. doi: 10.12438/cst.2023-0095

      WANG Tong, LIU Feng, ZHAO Xin, et al. Reflection on China’s coal resource guarantee capacity and exploration work under the background of “double carbon”[J]. Coal Science and Technology, 2023, 51(12): 1−8. doi: 10.12438/cst.2023-0095
      [6]
      范亚奇,张新国,常啸,等. 不同深度黄土微观特性对开采沉陷的影响研究[J]. 煤矿安全,2024,55(4):143−151.

      FAN Yaqi, ZHANG Xinguo, CHANG Xiao, et al. Study on the impact of microscopic characteristics of loess at different depths on mining subsidence[J]. Safety in Coal Mines, 2024, 55(4): 143−151.
      [7]
      李江华. 弱胶结巨厚砂砾岩含水层离层突水机制研究[J]. 煤炭科学技术,2024,52(2):209−218. doi: 10.12438/cst.2023-1681

      LI Jianghua. Study on separated layer water burst mechanism for weakly cemented giant thick glutenite[J]. Coal Science and Technology, 2024, 52(2): 209−218. doi: 10.12438/cst.2023-1681
      [8]
      徐智敏,陈天赐,陈歌,等. 煤层采动顶板水文地质参数演化与矿井涌水量动态计算方法[J]. 煤炭学报,2023,48(2):833−845.

      XU Zhimin, CHEN Tianci, CHEN Ge, et al. Hydrogeological parameter evolution of coal seam roof and dynamic calculation method of mine water inflow[J]. Journal of China Coal Society, 2023, 48(2): 833−845.
      [9]
      王孝坤,郑禄林,兰红,等. 基于LDA-RBF及综合赋权法的顶板突水危险性评价[J]. 煤矿安全,2024,55(4):187−196.

      WANG Xiaokun, ZHENG Lulin, LAN Hong, et al. Roof water inrush risk assessment based on LDA-RBF and comprehensive weighting method[J]. Safety in Coal Mines, 2024, 55(4): 187−196.
      [10]
      侯恩科,严迎新,文强,等. 巷道掘进顶板突水危险性预测研究[J]. 煤炭科学技术,2022,50(10):110−120.

      HOU Enke, YAN Yingxin, WEN Qiang, et al. Study on prediction of water inrush hazard in roof of roadway driving[J]. Coal Science and Technology, 2022, 50(10): 110−120.
      [11]
      陈军涛,朱君,刘磊,等. 定向区域注浆三维模拟试验系统研制及应用[J]. 煤炭科学技术,2023,51(7):179−186.

      CHEN Juntao, ZHU Jun, LIU Lei, et al. Development and application of a three-dimensional simulation test system for directional regional grouting[J]. Coal Science and Technology, 2023, 51(7): 179−186.
      [12]
      曹西武,田茂霖,肖洪天,等. 深埋巷道耦合注浆浆液扩散范围及加固特性研究[J]. 煤矿安全,2023,54(11):116−123.

      CAO Xiwu, TIAN Maolin, XIAO Hongtian, et al. Study on diffusion range and reinforcement characteristics of coupling grouting slurry in deep roadway[J]. Safety in Coal Mines, 2023, 54(11): 116−123.
      [13]
      吕鑫,杨科,方珏静,等. 采空区破碎岩体负压注浆加固试验研究与机制分析[J]. 岩石力学与工程学报,2023,42(S2):4174−4188.

      LYU Xin, YANG Ke, FANG Juejing, et al. Experimental study and mechanism analysis of negative pressure grouting reinforcement for broken rock mass in goaf[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2): 4174−4188.
      [14]
      周中,邓卓湘,鄢海涛,等. 岩溶区隧道新型绿色注浆材料试验研究[J]. 铁道工程学报,2023,40(7):63−68. doi: 10.3969/j.issn.1006-2106.2023.07.011

      ZHOU Zhong, DENG Zhuoxiang, YAN Haitao, et al. Experimental study on new green grouting material of Karst area tunnel[J]. Journal of Railway Engineering Society, 2023, 40(7): 63−68. doi: 10.3969/j.issn.1006-2106.2023.07.011
      [15]
      张小英,翁贤杰,杨旆,等. 考虑空间变异性的隧道砂层注浆加固体稳定性分析[J]. 隧道建设(中英文),2023,43(6):968−979.

      ZHANG Xiaoying, WENG Xianjie, YANG Pei, et al. Stability analysis of tunnel’s sand-layer grouting-reinforced body considering spatial variability[J]. Tunnel Construction, 2023, 43(6): 968−979.
      [16]
      张进鹏,李扬,赵炜,等. 不同岩石强度裂隙岩体约束自应力浆液加固试验研究与应用[J]. 煤炭学报,2023,48(9):3347−3359.

      ZHANG Jinpeng, LI Yang, ZHAO Wei, et al. Test and application of self-stress slurry reinforcement for fractured rock masses with different strength[J]. Journal of China Coal Society, 2023, 48(9): 3347−3359.
      [17]
      巫宇帆,李仕杰,周裕厚,等. 不同围压下砂岩破裂特性与注浆加固效应研究[J]. 地下空间与工程学报,2023,19(2):680−690.

      WU Yufan, LI Shijie, ZHOU Yuhou, et al. Study on the fracture characteristics of sandstone and the effect of grouting reinforcement under different confining pressure[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2): 680−690.
      [18]
      张培森,许大强,李腾辉,等. 裂隙砂岩注浆前后渗流特性及注浆后力学特性试验研究[J]. 岩土力学,2023,44(S1):12−26.

      ZHANG Peisen, XU Daqiang, LI Tenghui, et al. Experimental study of seepage characteristies before and after grouting and mechanical characteristies after grouting of fractured sandstone[J]. Rock and Soil Mechanics, 2023, 44(S1): 12−26.
      [19]
      张宁,王梦雅,王川,等. 赤泥基注浆加固材料制备与性能研究[J]. 现代隧道技术,2023,60(1):270−280.

      ZHANG Ning, WANG Mengya, WANG Chuan, et al. Study on the preparation and performance of red mud-based grouting reinforcement materials[J]. Modern Tunnelling Technology, 2023, 60(1): 270−280.
      [20]
      雷尊贵,张松涛,陈培冲. 双峰顶隧道穿越松散岩体注浆加固试验研究[J]. 地下空间与工程学报,2021,17(S1):40−45.

      LEI Zungui, ZHANG Songtao, CHEN Peichong. Study on grouting reinforcement of twin-peak tunnel through loose rock mass[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 40−45.
      [21]
      曾一凡,孟世豪,吕扬,等. 基于矿井安全与生态水资源保护等多目标约束的超前疏放水技术[J]. 煤炭学报,2022,47(8):3091−3100.

      ZENG Yifan, MENG Shihao, LYU Yang, et al. Advanced drainage technology based on multi-objective constraint of mine safety and water resources protection[J]. Journal of China Coal Society, 2022, 47(8): 3091−3100.
      [22]
      曾一凡,孟世豪,武强,等. 天窗补给型衍生式矿井动力突水模式及其评价与治理技术[J]. 煤炭学报,2023,48(10):3776−3788.

      ZENG Yifan, MENG Shihao, WU Qiang, et al. Derivative mine dynamic water inrush mode of skylight leakage and its evaluation and control technology system[J]. Journal of China Coal Society, 2023, 48(10): 3776−3788.
      [23]
      赵世军,鹿存金,边凯,等. 银星一号煤矿侏罗系煤层顶板砂岩水害特征及防治技术[J]. 煤矿安全,2022,53(12):76−84.

      ZHAO Shijun, LU Cunjin, BIAN Kai, et al. Water disaster characteristics and prevention technology of Jurassic coal seam roof sandstone in Yinxing No. 1 Coal Mine[J]. Safety in Coal Mines, 2022, 53(12): 76−84.
      [24]
      曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.

      ZENG Yifan, WU Qiang, ZHAO Suqi, et al. Characteristics, causes, and prevention measures of coal mine waterhazard accidents in China[J]. Coal Science and Technology, 2023, 51(7): 1−14.
      [25]
      赵兵朝,冯杰,赵阳,等. 覆岩导水裂隙带发育高度动态演化规律研究[J]. 煤矿安全,2024,55(2):176−183.

      ZHAO Bingchao, FENG Jie, ZHAO Yang, et al. Study on dynamic evolution law of development height of overburden water-flowing fractured zone[J]. Safety in Coal Mines, 2024, 55(2): 176−183.
      [26]
      钱自卫. 孔隙砂岩化学注浆浆液渗透扩散机理[D]. 徐州:中国矿业大学,2014.
      [27]
      贾东秀,唐道增,窦江海,等. 矿渣-粉煤灰注浆材料的性能与微观结构研究及优化[J]. 矿业研究与开发,2023,43(10):43−50.

      JIA Dongxiu, TANG Daozeng, DOU Jianghai, et al. Research and optimization on properties and microstructure of slag-fly ash grouting material[J]. Mining Research and Develoment, 2023, 43(10): 43−50.
      [28]
      解建,许大强,胡伟,等. 工作面上覆松散含水层注浆改造及其效果检验[J]. 煤矿安全,2023,54(10):168−175.

      XIE Jian, XU Daqiang, HU Wei, et al. Grouting reconstruction of loose aquifer overlying work face and its effect test[J]. Safety in Coal Mines, 2023, 54(10): 168−175.
      [29]
      苏现波,赵伟仲,王乾,等. 煤矿采动影响体微生物采残煤与CO2−粉煤灰协同充填关键技术[J]. 煤炭学报,2024,49(1):400−414.

      SU Xianbo, ZHAO Weizhong, WANG Qian, et al. Key technologies of microbial mining residual coal and CO2-fly ash co-filling in the impacted geological body of coal mining[J]. Journal of China Coal Society, 2024, 49(1): 400−414.
      [30]
      文志强,杨科,何祥,等. 多源煤基固废充填体固结与承载性能的温度效应研究[J]. 煤矿安全,2024,55(4):134−142.

      WEN Zhiqiang, YANG Ke, HE Xiang, et al. Research on temperature effect of consolidation and bearing capacity of multi-source coal-based solid waste backfill[J]. Safety in Coal Mines, 2024, 55(4): 134−142.
    • Related Articles

      [1]GE Junling, WANG Yanmin, LIU Tao. Numerical simulation study on seepage evolution law of coal seam water injection based on UDF[J]. Safety in Coal Mines, 2024, 55(1): 78-85. DOI: 10.13347/j.cnki.mkaq.20221796
      [2]XU Chao, CAO Mingyue, LI Xiaofang, SUN Haoshi, YAN Zhiming. Law of gas migration and enrichment in goaf based on three-dimensional porosity model[J]. Safety in Coal Mines, 2021, 52(5): 7-13.
      [3]LI Xianping. Numerical Simulation on Influence of Rock Mass Strength on Mining Stress Distribution in Fault Zone[J]. Safety in Coal Mines, 2018, 49(12): 208-211.
      [4]SUN Guowen, LUO Jiayuan, LUO Binyu. Numerical Simulation on Coupling Relationship Between Permeability and Stress of Mining-induced Strata[J]. Safety in Coal Mines, 2018, 49(1): 214-217.
      [5]ZHANG Yanbin, WANG Yi. Three Dimensional Expressions of Overburden Subsidence and Calculation of Porosity Distribution in Fully Mechanized Mining Face[J]. Safety in Coal Mines, 2017, 48(11): 210-212.
      [6]GUO Long, YU Shijian, SUN Kai, HUANG Qisong. Numerical Simulation for Permeability Evolution Process of Excavation Roadway Surrounding Rock Mass[J]. Safety in Coal Mines, 2015, 46(1): 17-21.
      [7]DENG Xiaosong, ZHENG Wancheng, LI Yibo. Numerical Simulation of Stress Field and Damage Field for Mining Rock[J]. Safety in Coal Mines, 2014, 45(2): 25-28.
      [8]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.
      [9]REN Wei, ZHAO Yao-jiang, FENG Zi-fang. Namerical Simulation of flow Field in Goof Based on FLUENT[J]. Safety in Coal Mines, 2013, 44(6): 26-29.
      [10]SONG Hong-jun, LAI Li-xue. Numerical Simulation of Overburden Failure Laws by Coal Seam Mining Under Goaf[J]. Safety in Coal Mines, 2013, 44(1): 35-38.
    • Cited by

      Periodical cited type(2)

      1. 王金成. 煤层注水对煤矿粉尘和瓦斯灾害的影响分析. 煤. 2025(02): 54-57 .
      2. 郭庆彪,谢扬,汪锋,郑美楠. 废弃采空区封存CO_2地表形变特征模拟研究. 煤矿安全. 2024(05): 1-10 . 本站查看

      Other cited types(0)

    Catalog

      Article views (28) PDF downloads (4) Cited by(2)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return