Citation: | LIU Li, MENG Xiangbao, CHEN Jihe, et al. Study on suppression effect and mechanisms of phosphorus-containing recycling substance on flame propagation of methane/coal dust composite explosion[J]. Safety in Coal Mines, 2025, 56(3): 75−83. DOI: 10.13347/j.cnki.mkaq.20231627 |
Magnesium ammonium phosphate (MgNH4PO4·6H2O) is a phosphorus-containing blockage commonly found in sewage treatment pipelines. In order to study its suppression effect on the methane/coal dust composite explosion, magnesium ammonium phosphate was subjected to mechanized chemical modification to prepare well-dispersed magnesium ammonium phosphate powder (S-MAP). The improved Hartmann flame propagation system was used to investigate the suppression effect of different mass fractions of S-MAP(20%, 40%, 60%, 80%)on the flame propagation of the methane/coal dust composite explosion. The experimental results indicate that the addition of S-MAP can significantly reduce flame propagation speed, height, and brightness. With the increase of S-MAP addition ratio, the flame propagation height decreased from over 900 mm to 134 mm, and the average flame propagation speed decreased from 8.76 mm/ms to 0.51 mm/s. When the S-MAP addition ratio reached 80%, the entire flame propagation process only presented small flames, which could suppress the propagation of flames; in terms of explosion suppression mechanism, S-MAP decomposition can absorb a large amount of heat, thereby exerting a cooling effect. The intermediate produced by thermal decomposition of S-MAP can adsorb explosion free radicals to block the explosion chain reaction, thereby exerting the effect of adsorbing explosive free radicals. The thermal decomposition products of S-MAP can dilute the concentration of oxygen and combustible gases in the explosion space, and at the same time, the thermal decomposition products can adsorb on the surface of coal dust to isolate the transfer of oxygen and heat, thereby exerting a suffocating effect. The coupling effect of the three suppresses the propagation process of methane/coal dust explosion flames.
[1] |
郭家鑫. 煤层气−煤粉两相体系燃烧过程研究[D]. 太原:中北大学,2022.
GUO Jiaxin. Study on combustion process of coalbed gas-coal dust two-phase system[D]. Taiyuan: North University of China, 2022.
|
[2] |
贺杰,程凯,张金. 氧化煤尘的爆炸特性及其变化规律[J]. 煤矿安全,2023,54(3):67−72.
HE Jie, CHENG Kai, ZHANG Jin. Explosion characteristics and variation of oxidized coal dust[J]. Safety in Coal Mines, 2023, 54(3): 67−72.
|
[3] |
宋双林,刘磊,田富超,等. 不同泄爆位置对甲烷/空气爆炸特性的影响[J]. 煤矿安全,2023,54(11):48−54.
SONG Shuanglin, LIU Lei, TIAN Fuchao, et al. Influence of different explosion venting positions on methane/air explosion characteristics[J]. Safety in Coal Mines, 2023, 54(11): 48−54.
|
[4] |
司荣军,王磊,贾泉升. 瓦斯煤尘爆炸抑隔爆技术研究进展[J]. 煤矿安全,2020,51(10):98−107.
SI Rongjun, WANG Lei, JIA Quansheng. Research progress of explosion suppression and isolation technology of gas and coal dust[J]. Safety in Coal Mines, 2020, 51(10): 98−107.
|
[5] |
白洁琪,白纪成,梁运涛,等. CF3H和CO2抑制CH4爆炸实验研究[J]. 煤矿安全,2024,55(5):122−130.
BAI Jieqi, BAI Jicheng, LIANG Yuntao, et al. Study on suppression of CH4 explosion by CF3H and CO2[J]. Safety in Coal Mines, 2024, 55(5): 122−130.
|
[6] |
兰安畅,郭春生,李耀谦,等. CO2抑制高硫煤自燃的实验研究[J]. 煤矿安全,2022,53(1):44−48.
LAN Anchang, GUO Chunsheng, LI Yaoqian, et al. Experimental research on CO2 inhibiting the spontaneous combustion of high sulfur coal[J]. Safety in Coal Mines, 2022, 53(1): 44−48.
|
[7] |
杨克,王辰升,纪虹,等. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报,2022,73(9):4245−4254.
YANG Ke, WANG Chensheng, JI Hong, et al. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder[J]. CIESC Journal, 2022, 73(9): 4245−4254.
|
[8] |
ZHAO Q, CHEN X F, LI Y, et al. Suppression mechanisms of ammonium polyphosphate on methane/coal dust explosion: Based on flame characteristics, thermal pyrolysis and explosion residues[J]. Fuel, 2022, 326: 125014. doi: 10.1016/j.fuel.2022.125014
|
[9] |
ZHAO Q, CHEN X F, YANG M J, et al. Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration[J]. Fuel, 2021, 298: 120831. doi: 10.1016/j.fuel.2021.120831
|
[10] |
ZHAO Q, LIU J, HUANG C Y, et al. Characteristics of coal dust deflagration under the atmosphere of methane and their inhibition by coal ash[J]. Fuel, 2021, 291: 120121. doi: 10.1016/j.fuel.2020.120121
|
[11] |
CHEN X F, HOU X Z, ZHAO Q, et al. Suppression of methane/coal dust deflagration by Al(OH)3 based on flame propagation characteristics and thermal decomposition[J]. Fuel, 2022, 311: 122530. doi: 10.1016/j.fuel.2021.122530
|
[12] |
杨振欣. 固态抑制剂对煤尘爆炸的抑制特性研究[D]. 太原:中北大学,2023.
YANG Zhenxin. Study on the suppression characteristics of solid state inhibitors on coal dust explosion[D]. Taiyuan: North University of China, 2023.
|
[13] |
代琳琳. 碳酸、磷酸盐对铝粉爆炸的抑制作用研究及数值模拟[D]. 天津:天津大学,2020.
DAI Linlin. Inhibition and numerical simulation of carbonate and phosphate on aluminum powder explosion [D]. Tianjin: Tianjin University, 2020.
|
[14] |
JIANG H P, BI M S, ZHANG T J, et al. A novel reactive P-containing composite with an ordered porous structure for suppressing nano-Al dust explosions[J]. Chemical Engineering Journal, 2021, 416: 129156. doi: 10.1016/j.cej.2021.129156
|
[15] |
梁一鸣,贺锋,张鏖,等. 含磷酸盐对聚乙烯粉尘爆燃的抑制影响实验研究[J]. 中国安全生产科学技术,2023,19(4):135−141.
LIANG Yiming, HE Feng, ZHANG Ao, et al. Experimental study on inhibitory effect of phosphates on polyethylene dust deflagration[J]. Journal of Safety Science and Technology, 2023, 19(4): 135−141.
|
[16] |
孟祥豹,王俊峰,张延松,等. 惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理研究[J]. 爆炸与冲击,2021,41(10):163−174.
MENG Xiangbao, WANG Junfeng, ZHANG Yansong, et al. Study on the inhibitory property and mechanism of inert powder on dust explosion flame of oil shale[J]. Explosion and Shock Waves, 2021, 41(10): 163−174.
|
[17] |
郝晓地,郭小媛,刘杰,等. 磷危机下的磷回收策略与立法[J]. 环境污染与防治,2021,43(9):1196−1200.
HAO Xiaodi, GUO Xiaoyuan, LIU Jie, et al. Strategy and legislation of phosphorus recovery under the phosphorus crisis[J]. Environmental Pollution & Control, 2021, 43(9): 1196−1200.
|
[18] |
KATAKI S, WEST H, CLARKE M, et al. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential[J]. Resources, Conservation and Recycling, 2016, 107: 142−156. doi: 10.1016/j.resconrec.2015.12.009
|
[19] |
LIANG Z L, ZHOU Z J, SUN Y Q, et al. Fire extinguishing performance of chemically bonded struvite ceramic powder with high heat-absorbing and flame retardant properties[J]. Materials, 2022, 15(22): 8021. doi: 10.3390/ma15228021
|
[20] |
陈曦,陈先锋,张洪铭,等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究[J]. 爆炸与冲击,2017,37(4):759−765.
CHEN Xi, CHEN Xianfeng, ZHANG Hongming, et al. Effects of inerting agent with different particle sizes on the flame propagation of aluminum dust[J]. Explosion and Shock Waves, 2017, 37(4): 759−765.
|
[21] |
曹卫国. 褐煤粉尘爆炸特性实验及机理研究[D]. 南京:南京理工大学,2016.
CAO Weiguo. Experimental and mechanism study on explosion characteristic of lignite coal dust[D]. Nanjing: Nanjing University of Science and Technology, 2016.
|
[22] |
DING Lu, ZHOU Zhijie, DAI Zhenghua, et al. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals[J]. Applied Energy, 2015, 155: 660−670. doi: 10.1016/j.apenergy.2015.06.062
|
[23] |
TIAN Bin, QIAO Yingyun, TIAN Yuanyu, et al. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 376−386. doi: 10.1016/j.jaap.2016.08.020
|
[24] |
LUO Lei, LIU Jiaxun, ZHANG Hai, et al. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 64−74. doi: 10.1016/j.jaap.2017.10.024
|
[25] |
P’YANKOVA A V, KONDRASHOVA N B, VAL’TSIFER I V, et al. Synthesis and thermal behavior of a struvite-based fine powder fire-extinguishing agent[J]. Inorganic Materials, 2021, 57(10): 1083−1091. doi: 10.1134/S0020168521100125
|
[26] |
QIAN Jifa, LIU Zhentang, LIN Song, et al. Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation[J]. Fuel, 2020, 265: 116992. doi: 10.1016/j.fuel.2019.116992
|
[27] |
LIN Song, LIU Zhentang, ZHAO Enlai, et al. A study on the FTIR spectra of pre- and post-explosion coal dust to evaluate the effect of functional groups on dust explosion[J]. Process Safety and Environmental Protection, 2019, 130: 48−56. doi: 10.1016/j.psep.2019.07.018
|
[28] |
YIN Hepeng, DAI Huaming. Flame inhibition of coal dust with different particle sizes by Al(H2PO2)3 and Al2O3[J]. Fuel, 2022, 326: 125001. doi: 10.1016/j.fuel.2022.125001
|
[29] |
ZHU Zongmin, RAO Wenhui, KANG Ahui, et al. Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite[J]. Polymer Degradation and Stability, 2018, 154: 1−9. doi: 10.1016/j.polymdegradstab.2018.05.015
|
[30] |
GE Hua, TANG Gang, HU Weizhao, et al. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6[J]. Journal of Hazardous Materials, 2015, 294: 186−194. doi: 10.1016/j.jhazmat.2015.04.002
|
[31] |
LI Qingzhao, YUAN Chuangchuang, TAO Qinglin, et al. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors[J]. Fuel, 2018, 215: 417−428. doi: 10.1016/j.fuel.2017.11.093
|
[32] |
YIN Hepeng, DAI Huaming, LIANG Guangqian. Inerting mechanism of magnesium carbonate hydroxide pentahydrate for coal dust deflagration under coal gasification[J]. Powder Technology, 2022, 400: 117274. doi: 10.1016/j.powtec.2022.117274
|
1. |
程士宜. 不同温度-冲击载荷下煤的渗透率演化规律研究. 煤矿安全. 2024(08): 43-50 .
![]() | |
2. |
康俊强,简阔,傅雪海,申建,王一兵,段超超. 急倾斜煤储层水力压裂裂缝扩展研究. 煤矿安全. 2024(11): 49-60 .
![]() | |
3. |
熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 .
![]() |