Citation: | CUI Jianting, WANG Kun, LIU Guojian, et al. Study on UAV observation methods for surface subsidence caused by multiple coal seams mining in western mining areas[J]. Safety in Coal Mines, 2024, 55(6): 228−235. DOI: 10.13347/j.cnki.mkaq.20231206 |
In the western mining area, coal mining is characterized by shallow burial depth, thin bedrock, multi coal seam mining, and a fragile surface environment. To address the limitations of traditional observation methods for mining-induced subsidence, such as small coverage, high operation intensity, and low automation, unmanned aerial vehicle (UAV) photogrammetry technology has been introduced to observe and analyze the surface subsidence patterns of a coal mine working face. The results show that: the UAV photogrammetry method achieves a centimeter-level observation accuracy, with a median error of 4.4 cm, which meets the overall observation requirements for surface subsidence. A surface subsidence model of the entire mining area within a 2.53 km² survey area was obtained using the UAV photogrammetry method. This model accurately reflects the subsidence area and amplitude of the surface in the mining area. Due to the influence of multiple coal seams mining, the surface subsidence model exhibits an uneven basin shape. The subsidence curves along the strike and dip of the working face show asymmetry, with a maximum subsidence value of 3.18 m.
[1] |
李春意,车宇航,王石岩. 煤矿开采地表沉陷盆地边界的再认识[J]. 中国安全生产科学技术,2018,14(12):84−89.
LI Chunyi, CHE Yuhang, WANG Shiyan. Reconsideration of surface subsidence basin boundary induced by coal mining[J]. Journal of Safety Science and Technology, 2018, 14(12): 84−89.
|
[2] |
周大伟,吴侃,周鸣,等. 地面三维激光扫描与RTK相结合建立开采沉陷观测站[J]. 测绘科学,2011,36(3):79−81.
ZHOU Dawei, WU Kan, ZHOU Ming, et al. Establishing mining subsidence observation station by combining terrestrial 3D laser scanning technology with RTK[J]. Science of Surveying and Mapping, 2011, 36(3): 79−81.
|
[3] |
GAO Jingxiang, HU Hong. Advanced GNSS technology of mining deformation monitoring[J]. Procedia Earth and Planetary Science, 2009(1): 1081−1088.
|
[4] |
刘玉溪,秦宏楠,杨凤芸,等. 地基SAR用于矿山应急救援地表沉陷监测研究[J]. 中国安全生产科学技术,2022,18(S1):25−30.
LIU Yuxi, QIN Hongnan, YANG Fengyun, et al. Research on ground-based SAR for monitoring surface subsidence in mine emergency rescue[J]. Journal of Safety Science and Technology, 2022, 18(S1): 25−30.
|
[5] |
ZHENG Junliang, YAO Wanqiang, LIN Xiaohu, et al. An accurate digital subsidence model for deformation detection of coal mining areas using a UAV-Based LiDAR[J]. Remote Sensing, 2022, 14(2): 421. doi: 10.3390/rs14020421
|
[6] |
张程,马晓东,杨可明. 结合遥感影像的矿山开采沉陷专题信息三维表达[J]. 中国安全生产科学技术,2016,12(7):87−93.
ZHANG Cheng, MA Xiaodong, YANG Keming. Three-dimensional expressing on thematic information of mining subsidence combined with remote sensing images[J]. Journal of Safety Science and Technology, 2016, 12(7): 87−93.
|
[7] |
王昆,杨鹏,吕文生,等. 无人机遥感在矿业领域应用现状及发展态势[J]. 工程科学学报,2020,42(9):1085−1095.
WANG Kun, YANG Peng, LYU Wensheng, et al. Current status and development trend of UAV remote sensing applications in the mining industry[J]. Chinese Journal of Engineering, 2020, 42(9): 1085−1095.
|
[8] |
张红,李全明,陈涛,等. 三维倾斜摄影技术在尾矿库风险防控上的运用[J]. 中国安全生产科学技术,2022,18(2):27−31.
ZHANG Hong, LI Quanming, CHEN Tao, et al. Application of three-dimensional oblique photography in risk prevention and control of tailings pond[J]. Journal of Safety Science and Technology, 2022, 18(2): 27−31.
|
[9] |
杨超,杨鹏,吕文生,等. 基于无人机摄影测量的尾矿坝边坡表面变形监测[J]. 中国安全生产科学技术,2021,17(5):5−11.
YANG Chao, YANG Peng, LYU Wensheng, et al. Surface deformation monitoring of tailings dam slope based on UAV photogrammetry[J]. Journal of Safety Science and Technology, 2021, 17(5): 5−11.
|
[10] |
马国超,王立娟,马松,等. 基于激光扫描和无人机倾斜摄影的露天采场安全监测应用[J]. 中国安全生产科学技术,2017,13(5):73−78.
MA Guochao, WANG Lijuan, MA Song, et al. Application of safety monitoring in open pit based on laser scanning and UAV oblique photography[J]. Journal of Safety Science and Technology, 2017, 13(5): 73−78.
|
[11] |
高冠杰,侯恩科,谢晓深,等. 基于四旋翼无人机的宁夏羊场湾煤矿采煤沉陷量监测[J]. 地质通报,2018,37(12):2264−2269.
GAO Guanjie, HOU Enke, XIE Xiaoshen, et al. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors[J]. Geological Bulletin of China, 2018, 37(12): 2264−2269.
|
[12] |
张永庭,徐友宁,梁伟,等. 基于无人机载LiDAR的采煤沉陷监测技术方法−以宁东煤矿基地马连台煤矿为例[J]. 地质通报,2018,37(12):2270−2277.
ZHANG Yongting, XU Youning, LIANG Wei, et al. Technical methods for colliery subsidence disaster mon-itoring using UAV LiDAR: A case study of the Maliantai colliery, Ningdong coal base, Ningxia[J]. Geological Bulletin of China, 2018, 37(12): 2270−2277.
|
[13] |
ZHOU Dawei, QI Lizhuang, ZHANG Demin, et al. Unmanned Aerial Vehicle(UAV)Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China[J]. IEEE Access, 2020, 8: 16372−16386. doi: 10.1109/ACCESS.2020.2967410
|
[14] |
谢晓深,侯恩科,王双明,等. 风沙滩地区中深埋厚煤层综采地表移动变形规律实测研究[J]. 煤矿安全,2021,52(12):199−206.
XIE Xiaoshen, HOU Enke, WANG Shuangming, et al. Study on surface movement and deformation law of the middle deep buried thick seam in sandy region[J]. Safety in Coal Mines, 2021, 52(12): 199−206.
|
[15] |
尹宝杰,王爱林,张鹏飞,等. 固体充填开采地表沉陷实测规律及控制效果分析[J]. 中国煤炭,2018,44(10):81−86.
YIN Baojie, WANG Ailin, ZHANG Pengfei, et al. Analysis of the laws and control effect of surface subsidence of solid backfilling mining[J]. China Coal, 2018, 44(10): 81−86.
|
[16] |
WHEATON J M, BRASINGTON J, DARBY S E, et al. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets[J]. Earth Surface Processes and Landforms, 2009, 35(2): 136−156.
|
[17] |
国家安全生产监督管理总局,国家煤矿安全监察局,国家能源局,等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京:煤炭工业出版社,2017.
|
1. |
曹璐璐,谢贤平,刘杰. 矿井U型工作面火灾烟流危险性控制的模拟分析. 中国安全生产科学技术. 2024(01): 78-85 .
![]() |