Citation: | HAN Wen, YU Zhaoyang, LIU Fei, et al. Risk assessment of gas explosion based on fuzzy Bayesian network improved by entropy weight method[J]. Safety in Coal Mines, 2025, 56(1): 52−61. DOI: 10.13347/j.cnki.mkaq.20231154 |
In order to accurately and effectively evaluate the risk of gas explosion in coal mines, an improved fuzzy Bayesian network gas explosion risk assessment model based on entropy weight method is proposed. Firstly, the risk identification of gas explosion accident cases is carried out, and 18 main risk factors of gas explosion are extracted. Secondly, the fault tree model is established, and the corresponding Bayesian network model is established according to the mapping rules. In order to reduce the subjectivity of expert judgment, the combination weight obtained by entropy weight method combined with fuzzy theory is taken as the prior probability of Bayesian network, and then the risk of gas explosion in Songlin Coal Mine of Guizhou Province is evaluated by this model. The results show that the risk probability of gas explosion in Songlin Coal Mine in Guizhou is 25 %, and the risk level is general risk. Gas accumulation and coal spontaneous combustion are the main risk factors of gas explosion. Among them, ventilation resistance, gas outburst, explosion-proof equipment failure, illegal blasting, coal spontaneous combustion and other factors are the key causes of gas explosion, and the evaluation results are consistent with the actual situation.
[1] |
武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636.
WU Qiang, TU Kun, ZENG Yifan, et al. Discussion on the main problems and countermeasures of building China’s main energy(coal) upgraded version[J]. Journal of China Coal Society, 2019, 44(6): 1625−1636.
|
[2] |
赵佳佳,田世祥,杨家向,等. 基于知识图谱的煤矿热动力灾害可视化研究[J]. 煤矿安全,2023,54(3):33−39.
ZHAO Jiajia, TIAN Shixiang, YANG Jiaxiang, et al. Study on visualization of thermodynamic disaster in coal mine based on knowledge map[J]. Safety in Coal Mines, 2023, 54(3): 33−39.
|
[3] |
郭慧敏,成连华,李树刚. 基于DEMATEL-ISM-MICMAC的煤矿瓦斯爆炸致因研究[J]. 矿业安全与环保,2023,50(2):114−119.
GUO Huimin, CHENG Lianhua, LI Shugang. Research on causal factors of coal mine gas explosion based on DEMATEL-ISM-MICMAC[J]. Mining Safety & Environmental Protection, 2023, 50(2): 114−119.
|
[4] |
解镕嘉,谢雄刚,殷涛,等. 基于熵权物元可拓模型的煤矿瓦斯爆炸危险性评价[J]. 化工矿物与加工,2023,52(8):32−38.
XIE Rongjia, XIE Xionggang, YIN Tao, et al. The risk evaluation of gas explosion in coal mines by matter-element extension model based on entropy weight[J]. Industrial Minerals & Processing, 2023, 52(8): 32−38.
|
[5] |
景国勋,陈纪宏. 基于SPA-VFS耦合模型的瓦斯爆炸风险评价[J]. 安全与环境学报,2023,23(7):2151−2158.
JING Guoxun, CHEN Jihong. Risk assessment of gas explosion based on SPA-VFS coupling model[J]. Journal of Safety and Environment, 2023, 23(7): 2151−2158.
|
[6] |
李红霞,吴雪菲,谢谦. 综采工作面瓦斯爆炸风险评估[J]. 西安科技大学学报,2022,42(2):245−250.
LI Hongxia, WU Xuefei, XIE Qian. Gas risk assessment of fully-mechanized mining face[J]. Journal of Xi’an University of Science and Technology, 2022, 42(2): 245−250.
|
[7] |
汪圣伟,李希建,代芳瑞,等. 基于改进AHP-SPA的煤矿瓦斯爆炸风险评价[J]. 矿业研究与开发,2021,41(4):113−117.
WANG Shengwei, LI Xijian, DAI Fangrui, et al. Risk assessment of gas explosion based on improved AHP-SPA[J]. Mining Research and Development, 2021, 41(4): 113−117.
|
[8] |
鲁锦涛,任利成,戎丹,等. 基于灰色-物元模型的煤矿瓦斯爆炸风险评估[J]. 中国安全科学学报,2021,31(2):99−105.
LU Jintao, REN Licheng, RONG Dan, et al. Assessment of coal mine gas explosion risk based on grey-matter element model[J]. China Safety Science Journal, 2021, 31(2): 99−105.
|
[9] |
李红霞,郑佳敏. 煤矿瓦斯爆炸模糊Bow-tie模型分析[J]. 矿业安全与环保,2020,47(5):119−126.
LI Hongxia, ZHENG Jiamin. Analysis of fuzzy Bow-tie model of gas explosion in coal mine[J]. Mining Safety & Environmental Protection, 2020, 47(5): 119−126.
|
[10] |
皮子坤,贾宝山,贾廷贵,等. 基于前景理论和区间数的煤矿瓦斯爆炸风险评价[J]. 中国安全科学学报,2017,27(6):91−96.
PI Zikun, JIA Baoshan, JIA Tinggui, et al. Assessment of risk of gas explosion in coal mine based on prospect theory and interval number[J]. China Safety Science Journal, 2017, 27(6): 91−96.
|
[11] |
张津嘉,许开立,王延瞳,等. 瓦斯爆炸事故风险耦合分析[J]. 东北大学学报(自然科学版),2017,38(3):414−417.
ZHANG Jinjia, XU Kaili, WANG Yantong, et al. Analysis of risk coupling of gas explosion accidents[J]. Journal of Northeastern University (Natural Science Edition), 2017, 38(3): 414−417.
|
[12] |
LI M, WANG D M, SHAN H. Risk assessment of mine ignition sources using fuzzy Bayesian network[J]. Process Safety and Environmental Protection, 2019, 125: 297−306. doi: 10.1016/j.psep.2019.03.029
|
[13] |
史晓娟,姚兵,顾华北. 基于模糊贝叶斯网络的矿井排水系统故障诊断[J]. 工矿自动化,2022,48(9):77−83.
SHI Xiaojuan, YAO Bing, GU Huabei. Fault diagnosis of mine drainage system based on fuzzy Bayesian network[J]. Industry and Mine Automation, 2022, 48(9): 77−83.
|
[14] |
李金蓉,杨玉中. DS理论-贝叶斯网络下的煤矿通风系统风险评估[J]. 中国安全科学学报,2022,32(8):146−153.
LI Jinrong, YANG Yuzhong. Risk assessment of ventilation system in coal mines based on DS theory and Bayesian network[J]. China Safety Science Journal, 2022, 32(8): 146−153.
|
[15] |
袁奇,张晓蕾,张兴凯,等. 地下工程火灾综合定量风险评估方法[J]. 安全与环境学报,2024,24(1):42−52.
YUAN Qi, ZHANG Xiaolei, ZHANG Xingkai, et al. Integrated quantitative risk assessment method for underground engineering fires[J]. Journal of Safety and Environment, 2024, 24(1): 42−52.
|
[16] |
洪伟斌,盛武. 基于DEMATEL-ISM-BN的煤矿透水事故影响因素分析[J]. 工矿自动化,2022,48(12):116−122.
HONG Weibin, SHENG Wu. Analysis of influencing factors of coal mine flooding accidents based on DEMATEL-ISM-BN[J]. Industrial and Mining Automation, 2022, 48(12): 116−122.
|
[17] |
成连华,左敏昊. 基于扎根理论的瓦斯爆炸风险累积效应研究[J]. 中国安全生产科学技术,2021,17(10):53−59.
CHENG Lianhua, ZUO Minhao. Research on cumulative effect of gas explosion risk based on grounded theory[J]. Journal of Safety Science and Technology, 2021, 17(10): 53−59.
|
[18] |
李敏,林志军,鲁义,等. 基于模糊贝叶斯网络的煤矿瓦斯爆炸风险评估[J]. 煤炭学报,2023,48(S2):626−637.
LI Min, LIN Zhijun, LU Yi, et al. Risk assessment of gas explosion coal mines based on fuzzy Bayesian network[J]. Journal of China Coal Society, 2023, 48(S2): 626−637.
|
[19] |
陈雍君,李晓健,张丽,等. 故障树和模糊贝叶斯网络在管廊运维风险评估中的应用研究[J]. 安全与环境学报,2024,24(3):857−866.
CHEN Yongjun, LI Xiaojian, ZHANG Li, et al. Research on the application of fault tree and fuzzy Bayesian network in utility tunnel operation and maintenance risk assessment[J]. Journal of Safety and Environment, 2024, 24(3): 857−866.
|
[20] |
田文杰,徐吉辉,郝旭祥. 不确定条件下任务风险分析的贝叶斯网络方法[J]. 兵器装备工程学报,2023,44(1):152−158.
TIAN Wenjie, XU Jihui, HAO Xuxiang. Bayesian network method for mission risk analysis under uncertainty[J]. Journal of Ordnance and Equipment Engineering, 2023, 44(1): 152−158.
|
[21] |
姚成玉,陈东宁,王斌. 基于T-S故障树和贝叶斯网络的模糊可靠性评估方法[J]. 机械工程学报,2014,50(2):193−201. doi: 10.3901/JME.2014.02.193
YAO Chengyu, CHEN Dongning, WANG Bin. Fuzzy reliability assessment method based on T-S fault tree and Bayesian network[J]. Journal of Mechanical Engineering, 2014, 50(2): 193−201. doi: 10.3901/JME.2014.02.193
|
[22] |
余磊,李波. 基于熵权的未确知测度理论的高层建筑火灾危险性评价[J]. 安全与环境工程,2017,24(1):115−120.
YU Lei, LI Bo. Fire risk evaluation for high-rise buildings based on entropy weight and uncertainty measurement theory[J]. Safety and Environmental Engineering, 2017, 24(1): 115−120.
|
[23] |
成连华,解萌玥,左敏昊,等. 基于ISM-BN的煤矿瓦斯爆炸风险评判方法及其应用[J]. 煤矿安全,2022,53(10):1−8.
CHENG Lianhua, XIE Mengyue, ZUO Minhao, et al. Risk evaluation method of coal mine gas explosion based on ISM-BN and its application[J]. Safety in Coal Mines, 2022, 53(10): 1−8.
|
[24] |
司荣军,李润之. 低浓度含氧瓦斯爆炸动力特性及防控关键技术[J]. 煤炭科学技术,2020,48(10):17−36.
SI Rongjun, LI Runzhi. Dynamic characteristics of low-concentration oxygen-containing gas explosion and key technologies for prevention and control[J]. Coal Science and Technology, 2020, 48(10): 17−36.
|
[25] |
赵佳佳,田世祥,李鹏,等. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报,2023,74(9):3931−3945.
ZHAO Jiajia, TIAN Shixiang, LI Peng, et al. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust[J]. CIESC Journal, 2023, 74(9): 3931−3945.
|
[26] |
程方明,南凡,罗振敏,等. 瓦斯抑爆材料及机理研究进展与发展趋势[J]. 煤炭科学技术,2021,49(8):114−124.
CHENG Fangming, NAN Fan, LUO Zhenmin, et al. Research progress and development trend of gas explosion suppression materials and mechanism[J]. Coal Science and Technology, 2021, 49(8): 114−124.
|
[1] | WEN Tianfei, GAO Yu, WANG Quan, YANG Chuang. Key technologies for path planning of coal mine wheeled robots integrating fast traversal random trees and Q-reinforcement learning[J]. Safety in Coal Mines, 2025, 56(3): 233-241. DOI: 10.13347/j.cnki.mkaq.20241415 |
[2] | LU Shouqing, LI Mingjie, SI Shufang, SA Zhanyou, LIU Jie, WANG Chengfeng, BEI Taibiao, SHI Jiang. Analysis of outburst instability tendency of coal containing methane based on energy theory[J]. Safety in Coal Mines, 2022, 53(10): 105-111. |
[3] | Control method and system design for power saving and power consumption reduction of gamma LWD probe tube[J]. Safety in Coal Mines, 2022, 53(1): 161-166. |
[4] | ZHOU Daiyong. Wind-induced vibration piezoelectric energy harvesting technology in underground mine[J]. Safety in Coal Mines, 2021, 52(9): 153-156. |
[5] | DONG Jianguo, LI Yanmin, ZHOU Xingdong, ZHANG Lei. Several Methods of Reducing Discharge Energy for Intrinsic Safety Power Supply[J]. Safety in Coal Mines, 2020, 51(3): 97-99. |
[6] | ZHOU Min, SHENG Tong, ZHU Fang, GAO Wen. Dynamic Relationship Between Carbon Emission and Economic Growth in China’s Energy Consumption[J]. Safety in Coal Mines, 2018, 49(5): 253-256. |
[7] | CUI Rui, CHENG Wuyi. Influence of Ignition Energy on Explosion Behavior of Pulverized Coal[J]. Safety in Coal Mines, 2017, 48(4): 16-19. |
[8] | CHEN Quan, SHI Xuan. Application of Energy Source Analysis in Safety Risk Identification of Coal Mine[J]. Safety in Coal Mines, 2016, 47(6): 240-242,246. |
[9] | LI Wentao, ZHAO Jianzhong, GUO Boting. Energy Consumption Analysis of Separating Technology for Low Concentration Mine Gas Hydrate[J]. Safety in Coal Mines, 2015, 46(12): 188-191. |
[10] | FENG Xiao-jun, SHEN Rong-xi, CAO Xin-qi, WEI Ming-yao. Analysis of Hard Roof Fracture and Energy Conversion[J]. Safety in Coal Mines, 2012, 43(4): 150-153. |
1. |
程士宜. 不同温度-冲击载荷下煤的渗透率演化规律研究. 煤矿安全. 2024(08): 43-50 .
![]() | |
2. |
康俊强,简阔,傅雪海,申建,王一兵,段超超. 急倾斜煤储层水力压裂裂缝扩展研究. 煤矿安全. 2024(11): 49-60 .
![]() | |
3. |
熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 .
![]() |