Citation: | WANG Xiaokun, ZHENG Lulin, LAN Hong, et al. Roof water inrush risk assessment based on LDA-RBF and comprehensive weighting method[J]. Safety in Coal Mines, 2024, 55(4): 187−196. DOI: 10.13347/j.cnki.mkaq.20230509 |
In order to solve the problem of roof water inrush risk during the mining of No. 9 coal seam in Longfeng Coal Mine, an LDA-RBF neural network model for predicting the development height of water-conduction fracture zone was constructed by linear discriminant analysis (LDA), and a CRITIC-AHP comprehensive weighting method was established based on the improved CRITIC evaluation method combined with analytic hierarchy method (AHP) to evaluate the risk of roof cracking and the water richness level of the aquifer in the mining area. Through ArcGis geographic information processing technology, the cracking risk zone and the water-rich zone are superimposed to obtain a comprehensive zoning map of the water inrush risk of the roof of No.9 coal seam. The results show that the LDA-RBF neural network prediction model has a simple structure and higher fitting accuracy, and the development prediction height of the No.9 coal seam water-conducting fracture zone is 50.4 m, which has exceeded the bottom boundary level of most aquifers in the area, indicating that there is a high risk of cracking in most areas. The improved comprehensive weighting method avoids the problem of excessive subjectivity and objectivity of the evaluation results, and the water-rich zoning results are consistent with the actual water inflow of the borehole. Finally, the water inrush danger zone is mainly distributed in strips in the central and northern parts of the mining area, which is the result of the combined effect of strong water richness and high cracking risk of the aquifer in this area, indicating that the above areas should be paid attention to in actual mining.
[1] |
史红邈,姚邦华,温志辉,等. 煤矿陷落柱突水主控因素研究[J]. 煤矿安全,2020,51(12):232−236.
SHI Hongmiao, YAO Banghua, WEN Zhihui, et al. Study on main control factors for karst collapse column water inrush in coal mines[J]. Safety in Coal Mines, 2020, 51(12): 232−236.
|
[2] |
李博,韦韬,刘子捷. 西南地区煤层顶板岩溶含水层富水性评价指标体系构建及突水危险性评价[J]. 煤炭学报,2022,47(S1):152−159.
LI Bo, WEI Tao, LIU Zijie. Construction of evaluation index system for water abundance of karst aquifers and risk assessment of water inrush on coal seam roof in southwest China[J]. Journal of China Coal Society, 2022, 47(S1): 152−159.
|
[3] |
龙良良,王生全,肖乐乐,等. 基于GIS的巨厚煤层顶板突水危险性预测[J]. 煤矿安全,2020,51(12):45−49.
LONG Liangliang, WANG Shengquan, XIAO Lele, et al. Risk prediction of water inrush from roof of ultra thick coal seam based on GIS[J]. Safety in Coal Mines, 2020, 51(12): 45−49.
|
[4] |
侯恩科,严迎新,文强,等. 巷道掘进顶板突水危险性预测研究[J]. 煤炭科学技术,2022,50(10):110−120.
HOU Enke, YAN Yingxin, WEN Qiang, et al. Study on prediction of water inrush hazard in roof of roadwaydriving[J]. Coal Science and Technology, 2022, 50(10): 110−120.
|
[5] |
周全超,张洪清,焦扬,等. 基于组合赋权法的煤层顶板突水危险性评价[J]. 科学技术与工程,2022,22(9):3497−3503. doi: 10.3969/j.issn.1671-1815.2022.09.011
ZHOU Quanchao, ZHANG Hongqing, JIAO Yang, et al. Evaluation of the risk of water inrush from coal roof based on combination weighting method[J]. Science Technology and Engineering, 2022, 22(9): 3497−3503. doi: 10.3969/j.issn.1671-1815.2022.09.011
|
[6] |
LIU Shiliang, LI Wenping. Fuzzy comprehensive risk evaluation of roof water inrush based on catastrophe theory in the Jassic coalfield of northwest China[J]. Journal of Intelligent & Fuzzy Systems, 2019(37): 2101−2111.
|
[7] |
XIE Daolei, HAN Jing, ZHANG Huide, et al. Risk assessment of water inrush from coal seam roof based on combination weighting set pair analysis[J]. Sustainability, 2022, 14(19): 11978. doi: 10.3390/su141911978
|
[8] |
刘年平,赵春侠,王宏图,等. 煤层底板突水危险性的可拓聚类预测方法研究[J]. 矿业安全与环保,2016,43(2):63−66. doi: 10.3969/j.issn.1008-4495.2016.02.016
LIU Nianping, ZHAO Chunxia, WANG Hongtu, et al. Research on extension clustering prediction method for coal seam floor water inrush risk[J]. Mining Safety & Environmental Protection, 2016, 43(2): 63−66. doi: 10.3969/j.issn.1008-4495.2016.02.016
|
[9] |
王心义,姚孟杰,张建国,等. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报,2019,36(3):558−565.
WANG Xinyi, YAO Mengjie, ZHANG Jianguo, et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 558−565.
|
[10] |
尹尚先,徐维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术,2020,48(1):83−89.
YIN Shangxian, XU Wei, YIN Huichao, et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology, 2020, 48(1): 83−89.
|
[11] |
盖秋凯,黄磊,赵霖. 基于因子分析法的焦作矿区底板突水模型研究[J]. 煤炭工程,2021,53(1):123−127.
GAI Qiukai, HUANG Lei, ZHAO Lin. Floor water inrush model of Jiaozuo mining area based on factor analysis[J]. Coal Engineering, 2021, 53(1): 123−127.
|
[12] |
武强,黄晓玲,董东林,等. 评价煤层顶板涌(突)水条件的“三图-双预测法”[J]. 煤炭学报,2000(1):60−65. doi: 10.3321/j.issn:0253-9993.2000.01.014
WU Qiang, HUANG Xiaoling, DONG Donglin, et al. “Three maps two predictions” method to evaluate water bursting coditions on roof coal[J]. Journal of China Coal Society, 2000(1): 60−65. doi: 10.3321/j.issn:0253-9993.2000.01.014
|
[13] |
WU Qiang, SHEN Jianjun, LIU Weitao, et al. A RBFNN-based method for the prediction of the developedheight of a water-conductive fractured zone for fullymechanized mining with sublevel caving[J]. Arabian Journal of Geosciences, 2010(7): 172.
|
[14] |
郭均中. 上覆岩层导水裂隙带发育高度预测研究[D]. 三河:华北科技学院,2018.
|
[15] |
李振华,许延春,李龙飞,等. 基于BP神经网络的导水裂隙带高度预测[J]. 采矿与安全工程学报,2015,32(6):905−910.
LI Zhenhua, XU Yanchun, LI Longfei, et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 905−910.
|
[16] |
施龙青,吴洪斌,李永雷,等. 导水裂隙带发育高度预测的PCA-GA-Elman优化模型[J]. 河南理工大学学报(自然科学版),2021,40(4):10−18.
SHI Longqing, WU Hongbin, LI Yonglei, et al. Optimization model of PCA-GA-Elman for development height prediction of water-conducting fissure zone[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(4): 10−18.
|
[17] |
BI Yaoshan, WU Jiwen, ZHAI Xiaorong, et al. A prediction model for the height of the water-conducting fractured zone in the roof of coal mines based on factoranalysis and RBF neural network[J]. Arabian Journal ofGeosciences, 2022, 15(3): 241. doi: 10.1007/s12517-022-09523-3
|
[18] |
赵德星. 基于Elman神经网络的导水裂隙带高度预测模型[J]. 山西煤炭,2022,42(2):8−14. doi: 10.3969/j.issn.1672-5050.2022.02.002
ZHAO Dexing. Prediction model for height of water flowing fractured zones based on Elman neural network[J]. Shanxi Coal, 2022, 42(2): 8−14. doi: 10.3969/j.issn.1672-5050.2022.02.002
|
[19] |
姚文涛,寇天昊,樊斌,等. 采动覆岩离层注浆对矿井安全的影响评价[J]. 煤炭技术,2022,41(8):170−174.
YAO Wentao, KOU Tianhao, FAN Bin, et al. Influence evaluation of mining-induced strata separation grouting on mine safety[J]. Coal Technology, 2022, 41(8): 170−174.
|
[20] |
武强,许珂,张维. 再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J]. 煤炭学报,2016,41(6):1341−1347.
WU Qiang, XU Ke, ZHANG Wei. Further research on “three maps-two predictions” method for prediction on coalseam roof water bursting risk[J]. Journal of China Coal Society, 2016, 41(6): 1341−1347.
|
[21] |
王晓振,许家林,韩红凯,等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报,2019,44(12):3740−3749.
WANG Xiaozhen, XU Jialin, HAN Hongkai, et al. Stepped development characteristic of water flowing fracture heightwith variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740−3749.
|
[22] |
郭文兵,娄高中. 覆岩破坏充分采动程度定义及判别方法[J]. 煤炭学报,2019,44(3):755−766.
GUO Wenbing, LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society, 2019, 44(3): 755−766.
|
[23] |
李哲,陈嘉思,宫厚健,等. 煤层直接顶板弱富水性含水层涌(突)水危险性评价[J]. 煤矿安全,2018,49(7):181−184.
LI Zhe, CHEN Jiasi, GONG Houjian, et al. Risk evaluation of water inrush in poor water yield capacity aquifer of coal seam direct roof[J]. Safety in Coal Mines, 2018, 49(7): 181−184.
|
[24] |
SUN Zhenming, BAO Wenpeng. Comprehensive water inrush risk assessment method for coal seam roof[J]. Stainability, 2022, 14(17): 10475. doi: 10.3390/su141710475
|
[25] |
肖乐乐,牛超,代革联,等. 基于富水性结构指数法的直罗组地层富水性评价[J]. 煤炭科学技术,2018,46(11):207−213.
XIAO Lele, NIU Chao, DAI Gelian, et al. Evaluation of water abundance in Zhiluo formation based watery structure index method[J]. Coal Science and Technology, 2018, 46(11): 207−213.
|
[26] |
薛建坤. 基于分形理论的富水性指数法在含水层富水性评价中的应用[J]. 煤矿安全,2020,51(2):197−201.
XUE Jiankun. Application of water-rich index method based on fractal theory in water-rich evaluation of aquifer[J]. Safety in Coal Mines, 2020, 51(2): 197−201.
|
[27] |
LI Ruipeng, ZHENG Lulin, Xie Jin, et al. Assessment of water inrush from coal floor based on karst fractal-vulnerability index method[J]. Mathematical Problems in Engineerig, 2022(8): 1−12.
|
1. |
李小刚,唐政,朱静怡,杨兆中,李扬,谢鹏,廖宇. 深层煤岩气压裂研究进展与展望. 天然气工业. 2024(10): 126-139 .
![]() |