Citation: | YANG Xipei, XING Yuqiang. Numerical simulation of evolution law of coal seepage field under mining stress[J]. Safety in Coal Mines, 2024, 55(4): 33−41. DOI: 10.13347/j.cnki.mkaq.20231123 |
The development of fractures and pores in coal is the main factor affecting the seepage of water injection. With the advance of the working face, the mining stress will cause the change of coal seam pore fracture structure. In order to explore the change law of pore and fracture in coal during mining, based on triaxial compression experiment, volume deformation is used to characterize the evolution process of pore volume change with stress loading. Fluent custom function (UDF) is applied to program the relationship between pore volume change with loading time. Taking mining time and water injection time as axes, the effect of mining dynamic stress on seepage field of coal seam water injection is analyzed by numerical simulation. By comparing the changes of seepage pressure, seepage velocity and water injection in the seepage field near the borehole in different stress loading stages with the same time increment, the results show that under the same time increment condition, the water pressure around the borehole increases successively, the water content around the borehole increases successively, and the water injection wetting range expands successively in the compaction stage, volume expansion stage, deformation and failure stage. It can be seen that mining stress has an important influence on water injection seepage.
[1] |
何国家,徐伟伟. 我国煤矿职业病现状及防治对策[J]. 中国煤炭,2014,40(10):19−24. doi: 10.3969/j.issn.1006-530X.2014.10.004
HE Guojia, XU Weiwei. Research on the status and control countermeasures of coal mine occupational disease in China[J]. China Coal, 2014, 40(10): 19−24. doi: 10.3969/j.issn.1006-530X.2014.10.004
|
[2] |
李德文,隋金君,刘国庆,等. 中国煤矿粉尘危害防治技术现状及发展方向[J]. 矿业安全与环保,2019,46(6):1−7.
LI Dewen, SUI Jinjun, LIU Guoqing, et al. Technical status and development direction of coal mine dust hazard prevention andcontrol technology in China[J]. Mining Safety & Environmental Protection, 2019, 46(6): 1−7.
|
[3] |
程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1−20.
CHENG Weimin, ZHOU Gang, CHEN Lianjun, et al. Research progress and prospect of dust China’s coal mines incontrol theory and technology in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1−20.
|
[4] |
王青松,金龙哲,孙金华. 煤层注水过程分析和煤体润湿机理研究[J]. 安全与环境学报,2004,4(1):70−73. doi: 10.3969/j.issn.1009-6094.2004.01.019
WANG Qingsong, JIN Longzhe, SUN Jinhua. A research on coal seam water in fusion course and coal body wetness mechanism[J]. Journal of Safety and Environment, 2004, 4(1): 70−73. doi: 10.3969/j.issn.1009-6094.2004.01.019
|
[5] |
牟全斌. 单一低渗煤层井下增透技术研究现状与展望[J]. 能源与环保,2022,44(9):281−287.
MOU Quanbin. Research status and prospect of permeability-increasing technology for single low permeability coal seam in underground[J]. China Enemy and Environmental Protection, 2022, 44(9): 281−287.
|
[6] |
刘啸. 采动应力分布特征的深度效应[J]. 煤矿安全,2020,51(6):163−167.
LIU Xiao. Depth effect of mining stress distribution characteristics[J]. Safety in Coal Mines, 2020, 51(6): 163−167.
|
[7] |
张向阳,涂敏,窦怡川. 深部近距离煤层上行开采覆岩运动及应力分布试验研究[J]. 中国安全生产科学技术,2015,11(5):18−25.
ZHANG Xiangyang, TU Min, DOU Yichuan. Experimental study on overlying strata movement and stress distribution during ascending mining in deep closer coal seam[J]. Journal of Safety Science and Technology, 2015, 11(5): 18−25.
|
[8] |
王辰霖,张小东,李贵中,等. 循环加卸载作用下不同高度煤样渗透性试验研究[J]. 岩石力学与工程学报,2018,37(10):2299−2308.
WANG Chenlin, ZHANG Xiaodong, LI Guizhong, et al. Experimental study on the permeability of coal samples with different heights under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2299−2308.
|
[9] |
贾恒义,王凯,王益博,等. 围压循环加卸载作用下含瓦斯煤样渗透特性试验研究[J]. 煤炭学报,2020,45(5):1710−1718.
JIA Hengyi, WANG Kai, WANG Yibo, et al. Permeability characteristics of gas-bearing coal specimens under cyclic loading-unloading of confining pressure[J]. Journal of China Coal Society, 2020, 45(5): 1710−1718.
|
[10] |
刘超,黄滚,赵宏刚,等. 复杂应力路径下原煤力学与渗透特性试验[J]. 岩土力学,2018,39(1):191−198.
LIU Chao, HUANG Gun, ZHAO Honggang, et al. Tests on mechanical and permeability characteristics of raw coal under complex stress paths[J]. Rock and Soil Mechanics, 2018, 39(1): 191−198.
|
[11] |
谢和平,周宏伟,刘建锋,等. 不同开采条件下采动力学行为研究[J]. 煤炭学报,2011,36(7):1067−1074.
XIE Heping, ZHOU Hongwei, LIU Jianfeng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067−1074.
|
[12] |
谢和平,张泽天,高峰,等. 不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J]. 煤炭学报,2016,41(10):2405−2417.
XIE Heping, ZHANG Zetian, GAO Feng, et al. Stress-fracture-seepage field behavior of coal under different mining layouts[J]. Journal of China Coal Society, 2016, 41(10): 2405−2417.
|
[13] |
高明忠,刘军军,林文明,等. 特厚煤层超前采动原位应力演化规律研究[J]. 煤炭科学技术,2020,48(2):28−35.
GAO Mingzhong, LIU Junjun, LIN Wenming, et al. Study on in-situ stress evolution law of ultra-thick coal seam in advance mining[J]. Coal Science and Technology, 2020, 48(2): 28−35.
|
[14] |
任建喜,陈首佳,岳东,等. 玉华矿4−2煤裂隙煤岩三轴压缩破坏机理研究[J]. 煤矿安全,2021,52(9):54−63.
REN Jianxi, CHEN Shoujia, YUE Dong, et al. Study on triaxial compression failure mechanism of fractured coal and rock in 4−2 coal seam of Yuhua Mine[J]. Safety in Coal Mines, 2021, 52(9): 54−63.
|
[15] |
程远平,刘洪永,郭品坤,等. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J]. 煤炭学报,2014,39(8):1650−1658.
CHENG Yuanping, LIU Hongyong, GUO Pinkun, et al. A theoretical model and evolution characteristic of mining-enhanced permeability in deeper gassy coal seam[J]. Journal of China Coal Society, 2014, 39(8): 1650−1658.
|
[16] |
魏晨慧,朱万成,白羽,等. 变温条件下深部煤层瓦斯分布规律的数值模拟[J]. 东北大学学报(自然科学版),2015,36(7):1033−1036.
WEI Chenhui, ZHU Wancheng, BAI Yu, et al. Numerical simulation on methane distribution legularity in deep coal seam under variable temperatures[J]. Journal of Northeastern University(Natural Science), 2015, 36(7): 1033−1036.
|
[17] |
肖智勇,王长盛,王刚,等. 基质-裂隙相互作用对渗透率演化的影响:考虑基质变形和应力修正[J]. 岩土工程学报,2021,43(12):2209−2219. doi: 10.11779/CJGE202112007
XIAO Zhiyong, WANG Zhangsheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209−2219. doi: 10.11779/CJGE202112007
|
[18] |
王登科,尹光志,刘建,等. 三轴压缩下含瓦斯煤岩弹塑性损伤耦合本构模型[J]. 岩土工程学报,2010,32(1):55−60.
WANG Dengke, YIN Guangzhi, LIU Jian, et al. Elastoplastic damage coupled model for gas-saturated coal under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 55−60.
|
[19] |
刘黎,李树刚,徐刚. 采动煤岩体瓦斯渗流-应力-损伤耦合模型[J]. 煤矿安全,2016,47(4):15−19.
LIU Li, LI Shugang, XU Gang. Gas seepage-stress-damage coupling model in mining coal and rock[J]. Safety in Coal Mines, 2016, 47(4): 15−19.
|
[20] |
荣腾龙,刘克柳,周宏伟,等. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报,2022,44(6):1106−1114.
RONG Tenglong, LIU Keliu, ZHOU Hongwei, et al. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106−1114.
|
1. |
王金成. 煤层注水对煤矿粉尘和瓦斯灾害的影响分析. 煤. 2025(02): 54-57 .
![]() | |
2. |
郭庆彪,谢扬,汪锋,郑美楠. 废弃采空区封存CO_2地表形变特征模拟研究. 煤矿安全. 2024(05): 1-10 .
![]() |