Citation: | WANG Wei, ZHAO Haifeng, WANG Dezhi, et al. Fracturing location optimization of floor coalbed methane wells with high water content in Hancheng Block[J]. Safety in Coal Mines, 2025, 56(3): 66−74. DOI: 10.13347/j.cnki.mkaq.20231012 |
In order to study the influence of fracturing location on the production of coalbed methane wells in floor with high water content, the 11# coal seam in Hancheng Block was taken as the research background, and Petrel integrated geological engineering software was used to simulate the influence law of three fracturing locations of roof, roof + coal seam and coal seam on the production of coalbed methane wells. The results show that when the coal reservoir is 1 m and 5 m away from the high aquifer, the three fracturing methods show the characteristics of low gas production, high water production and late gas occurrence time. When the distance from the aquifer increases to 10 m and 15 m, the variation range of water and gas production is small. Under the influence of floor high water content, the cumulative gas production of the three fracturing locations is from large to small: roof > coal seam + roof > coal seam; the coal seam, in which the roof fracturing has high peak daily gas, short gas emergence time and low water production, is less affected by high aquifer, and is more suitable for the fracturing reconstruction of coal bed gas wells with high water content in the floor. Three kinds of fracturing positions have been verified in Hancheng Mining Area, and the research results can provide guidance for the selection of fracturing location of floor coal seam with high water content.
[1] |
徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.
XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669−682.
|
[2] |
郭智栋,王玉斌,鲍园,等. 韩城地区煤层气成因类型及微生物开发潜力[J]. 西安科技大学学报,2023,43(3):539−548.
GUO Zhidong, WANG Yubin, BAO Yuan, et al. Coalbed methane generation and microbial-development potential in Hancheng Block[J]. Journal of Xi’an University of Science and Technology, 2023, 43(3): 539−548.
|
[3] |
王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2600−2612.
WANG Shuangming, SHEN Yanjun, SONG Shijie, et al. Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J]. Journal of China Coal Society, 2023, 48(7): 2600−2612.
|
[4] |
黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.
HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212−3238.
|
[5] |
贾慧敏,胡秋嘉,樊彬,等. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术[J]. 煤田地质与勘探,2021,49(2):34−42.
JIA Huimin, HU Qiujia, FAN Bin, et al. Causes for low CBM production of vertical wells and efficient development technology in northern Zhengzhuang Block in Qinshui Basin[J]. Coal Geology & Exploration, 2021, 49(2): 34−42.
|
[6] |
李俊峰. 沁水盆地郑庄井田煤层气分段压裂水平井开发技术[J]. 煤矿安全,2023,54(6):34−40.
LI Junfeng. Development technology of coalbed methane horizontal wells with staged fracturing in Zhengzhuang Field of Qinshui Basin[J]. Safety in Coal Mines, 2023, 54(6): 34−40.
|
[7] |
李全中,倪小明,胡海洋. 煤层气直井压裂规模对排采典型指标的影响[J]. 煤矿安全,2021,52(5):182−187.
LI Quanzhong, NI Xiaoming, HU Haiyang. Influence of fracturing scale of CBM vertical well on typical indexes of drainage and mining[J]. Safety in Coal Mines, 2021, 52(5): 182−187.
|
[8] |
胡秋嘉,毛崇昊,樊彬,等. 高煤阶煤层气井储层压降扩展规律及其在井网优化中的应用[J]. 煤炭学报,2021,46(8):2524−2533.
HU Qiujia, MAO Chonghao, FAN bin, et al. Review and development trends of coalbed methane exploitation technology in China: Pressure drop expansion law of high rank coalbed methane reservoir and its application in well pattern optimization[J]. Journal of China Coal Society, 2021, 46(8): 2524−2533.
|
[9] |
赵馨悦,韦波,袁亮,等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术,2023,51(4):105−117.
ZHAO Xinyue, WEI Bo, YUAN Liang, et al. Hydrological characters of coal reservoir and their significances on coalbed methane development: A review[J]. Coal Science and Technology, 2023, 51(4): 105−117.
|
[10] |
张健,朱苏阳,彭小龙,等. 煤层气−水−固三相流动模型与数值模拟研究[J]. 中国海上油气,2022,34(1):117−127.
ZHANG Jian, ZHU Suyang, PENG Xiaolong, et al. Tri-phase flow model of coalbed methane-water-solid and numerical simulation study[J]. China Offshore Oil and Gas, 2022, 34(1): 117−127.
|
[11] |
张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159.
ZHANG Qun, GE Chungui, LI Wei, et al. Efficient coalbed methane extraction mode of fractured soft and low permeability coal seam roof by staged fracturing horizontal well[J]. Journal of China Coal Society, 2018, 43(1): 150−159.
|
[12] |
李曙光,王红娜,徐博瑞,等. 大宁-吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172.
LI Shuguang, WANG Hongna, XU Borui, et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(3): 165−172.
|
[13] |
许耀波,朱玉双,张培河. 紧邻碎软煤层的顶板岩层水平井开发煤层气技术[J]. 天然气工业,2018,38(9):70−75. doi: 10.3787/j.issn.1000-0976.2018.09.009
XU Yaobo, ZHU Yushuang, ZHANG Peihe. Application of CBM horizontal well development technology in the roof strata close to broken-soft coal seams[J]. Natural Gas Industry, 2018, 38(9): 70−75. doi: 10.3787/j.issn.1000-0976.2018.09.009
|
[14] |
梁智飞,刘长松,甄怀宾,等. 韩城区块煤层气井二次改造工艺优化及现场试验[J]. 石油钻探技术,2022,50(3):92−98. doi: 10.11911/syztjs.2022067
LIANG Zhifei, LIU Changsong, ZHEN Huaibin, et al. Optimization and field application of secondary stimulation technologies for coalbed methane wells in Hancheng Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 92−98. doi: 10.11911/syztjs.2022067
|
[15] |
CIPOLLA C, WENG X, MACK M, et al. Integrating microseismic mapping and complex fracture modeling to characterize fracture complexity [C]// 2012 SPE/EAGE European Unconventional Resources Conference and Exhibition. SPE, 2012. ISBN:978−1−61399−189−3.
|
[16] |
WU K, OLSON J E. Simultaneous multifracture treatments: Fully coupled fluid flow and fracture mechanics for horizontal wells[J]. SPE Journal, 2015, 20(2): 337−346. doi: 10.2118/167626-PA
|
[17] |
周治东,程万,魏子俊,等. 基于BEM的水力裂缝起裂与扩展数值模拟[J]. 地球物理学进展,2020,35(2):807−814. doi: 10.6038/pg2020DD0041
ZHOU Zhidong, CHENG Wan, WEI Zijun, et al. Numerical simulation of hydraulic fracture initiation and propagation based on BEM[J]. Progress in Geophysics, 2020, 35(2): 807−814. doi: 10.6038/pg2020DD0041
|
[18] |
周航,周福建. 水力压裂切割煤层顶板力学机理及参数优化[J]. 科学技术与工程,2022,22(19):8253−8261.
ZHOU Hang, ZHOU Fujian. Mechanical mechanism and parameter optimization of hydraulic fracturing for cutting thick roof of coal seam[J]. Science Technology and Engineering, 2022, 22(19): 8253−8261.
|
[19] |
李越,牟建业,张士诚,等. 塔河缝洞型碳酸盐岩储层裂缝扩展规律数值模拟[J]. 中国石油大学学报(自然科学版),2022,46(6):135−142.
LI Yue, MOU Jianye, ZHANG Shicheng, et al. Numerical simulation of fracture propagation law in Tahe fractured-vuggy carbonate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6): 135−142.
|
[20] |
金衍,程万,陈勉. 页岩气储层压裂数值模拟技术研究进展[J]. 力学与实践,2016,38(1):1−9. doi: 10.6052/1000-0879-15-225
JIN Yan, CHENG Wan, CHEN Mian. A review of numerical simulations of hydro-fracking in shale gas reservoir[J]. Mechanics in Engineering, 2016, 38(1): 1−9. doi: 10.6052/1000-0879-15-225
|