Citation: | ZHAO Kun, LI Wen, OU Cong. Accurate hydraulic fracturing engineering test in coal seam section with comb-shaped branch holes through layers[J]. Safety in Coal Mines, 2022, 53(6): 89-95. |
[1] |
煤安监技装[2019]28号防治煤与瓦斯突出细则[A].
|
[2] |
石智军,李泉新,姚克.煤矿井下1 800 m水平定向钻进技术与装备[J].煤炭科学技术,2015,43(2):109.
SHI Zhijun, LI Quanxin, YAO Ke. Underground mine 1 800 m horizontal directional drilling technology and equipment[J]. Coal Science and Technology, 2015, 43(2): 109.
|
[3] |
陈冬冬,孙四清,张俭,等.井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J].煤炭科学技术,2020,48(10):84-89.
CHEN Dongdong, SUN Siqing, ZHANG Jian, et al.Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89.
|
[4] |
袁亮,林柏泉,杨威.我国煤矿水力化技术瓦斯治理研究进展及发展方向[J].煤炭科学技术,2015,43(1): 45-49.
YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45-49.
|
[5] |
郑凯歌.碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J].采矿与安全工程学报,2020,37(2):273-280.
ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272-281.
|
[6] |
孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017, 42(9):2337-2344.
SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344.
|
[7] |
杜天林,姜在炳,张俭,等.碎软煤层底板梳状孔分段压裂抽采瓦斯技术[J].煤矿安全,2021,52(1):107.
DU Tianlin, JIANG Zaibing, ZHANG Jian, et al. Gas extraction technology of staged fracturing with comb hole in soft seam floor[J]. Safety in Coal Mines, 2021, 52(1): 107.
|
[8] |
马文伟,李江涛,梁文勖.煤层定向分段水力压裂增透装置应用试验研究[J].煤炭科学技术,2019,47(5):132-138.
MA Wenwei, LI Jiangtao, LIANG Wenxu. Experimental study and application of directional subdivision hydraulic fracturing and permeability improvement device[J]. Coal Science and Technology, 2019, 47(5): 132-138.
|
[9] |
牟全斌,闫志铭,张俭.煤矿井下定向长钻孔水力压裂瓦斯高效抽采技术[J].煤炭科学技术,2020,48(7):296-303.
MU Quanbin, YAN Zhiming, ZHANG Jian. High efficiency gas drainage technology of hydraulic fracturing with directional long drilling in underground coal mine[J]. Coal Science and Technology, 2020, 48(7): 296.
|
[10] |
张俭.碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术[J].中国煤炭, 2018,44(7):101.
ZHANG Jian. High effective technology through overall hydraulic fracturing of long directional borehole in crushed and soft coal seam with low permeability and outburst potential[J]. China Coal, 2018, 44(7): 101.
|
[11] |
付江伟,田坤云,王公忠,等.井下“双高”专用压裂泵组研制与应用[J].煤炭工程,2016,48(5):135-138.
FU Jiangwei, TIAN Kunyun, WANG Gongzhong, et al. Development and application of special underground fracturing pump unit with high pressure and displacement[J]. Coal Engineering, 2016, 48(5): 135-138.
|
[12] |
李传亮,孔祥言.油井压裂过程中岩石破裂压力计算公式的理论研究[J].石油钻采工艺,2000,22(2):54-56.
LI Chuanliang, KONG Xiangyan. A theoretical study on rock breakdown pressure calculation equations of fracturing process[J]. Oil Drilling & Production Technology, 2000, 22(2): 54-56.
|
[13] |
YANG T H, LI L C, Tham L G, et al. Numerical approach to hydraulic fracturing in heterogeneous and permeable rocks[J]. Key Engineering Materials, 2003, 243-244: 351-356.
|
[14] |
李文,王广宏,欧聪,等.不同布孔方式下梳状定向长钻孔水力压裂数值模拟及工程应用[J].煤矿安全,2021,52(5):72-77.
LI Wen, WANG Guanghong, OU Cong, et al. Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes[J]. Safety in Coal Mines, 2021, 52(5): 72-77.
|
[15] |
袁志刚.煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究[D].重庆:重庆大学,2014.
|
[16] |
张飞.豫西构造煤穿层钻孔水力压裂数值模拟及应用研究[D].焦作:河南理工大学,2015.
|
[17] |
黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173.
HUANG Bingxiang, CHENG Qingying, LIU Changyou, et al. Hydraulic fracturing theory of coal-rock mass and its technical framework[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 167-173.
|