Citation: | LI Zhiqiang. Experimental study on impact tendency characteristics of coal under unloading and gas action[J]. Safety in Coal Mines, 2024, 55(4): 55−65. DOI: 10.13347/j.cnki.mkaq.20230978 |
The study on impact tendency of coal body containing gas under unloading damage plays a key role in exploring the formation mechanism of coal and gas combined rock burst in deep underground mine. In order to explore the influence of unloading action on impact tendency of coal body containing gas, this paper carried out cyclic loading and unloading of coal body containing gas with varying upper limit under different unloading amplitude conditions. The test results show that: gas has a deterioration effect on mechanical properties of coal. Under 9 MPa confining pressure, the average compressive strength of coal specimens under 1 MPa and 2 MPa methane action decreases by 11.2% and 18.7%, respectively. Under the unloading amplitude of 3 MPa and 6 MPa, the compressive strength σc decreases by 12.6% and 36.5%, and the residual elastic energy index CEF decreases by 10.4% and 16.7%, respectively. For coal containing 1 MPa gas, σc decreases by 13.5% and 39.8%, and CEF decreases by 15.9% and 43.6%, respectively. For coal containing 2 MPa gas, σc decreases by 16.7% and 47.2%, and CEF decreases by 20.3% and 48.5%, respectively. With the increase of unloading range, the mechanical property of coal specimen decreases continuously, and the gas action will further aggravate the unloading deterioration degree, and the deterioration degree will gradually deepen with the increase of gas pressure. In addition, pressure relief can effectively reduce the impact tendency of coal body. Meanwhile, the deterioration degree of impact tendency index of coal body containing gas after unloading is higher than that of original coal specimen, and with the increase of gas pressure, the reduction degree of residual elastic energy index is higher.
[1] |
谢和平,高明忠,付成行,等. 深部不同深度岩石脆延转化力学行为研究[J]. 煤炭学报,2021,46(3):701−715.
XIE Heping, GAO Mingzhong, FU Chenghang, et al. Mechanical behavior of brittle-ductile transition in rocks at different depths[J]. Journal of Coal Society, 2021, 46(3): 701−715.
|
[2] |
齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.
QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1−40.
|
[3] |
王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297−322.
WANG Enyuan, ZHANG Guorui, ZHANG Chaolin, et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of Coal Society, 2022, 47(1): 297−322.
|
[4] |
刘泉声,刘恺德,卢兴利,等. 高应力下原煤三轴卸荷力学特性研究[J]. 岩石力学与工程学报,2014,33(S2):3429−3438.
LIU Quansheng, LIU Kaide, LU Xingli, et al. Study of mechanical properties of raw coal under high stress with triaxial unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3429−3438.
|
[5] |
张军伟,姜德义,赵云峰,等. 分阶段卸荷过程中构造煤的力学特征及能量演化分析[J]. 煤炭学报,2015,40(12):2820−2828.
ZHANG Junwei, JIANG Deyi, ZHAO Yunfeng, et al. Analysis of the mechanical characteristics and energy evolution of tectonic coal during the process of step unloading[J]. Journal of China Coal Society, 2015, 40(12): 2820−2828.
|
[6] |
LIU Qingquan, CHENG Yuanping, JIN Kan, et al. Effect of confining pressure unloading on strength reduction of soft coal in borehole stability analysis[J]. Environmental Earth Sciences, 2007, 76(4): 1−11.
|
[7] |
蔡永博,王凯,袁亮,等. 深部煤岩体卸荷损伤变形演化特征数值模拟及验证[J]. 煤炭学报,2019,44(5):1527−1535.
CAI Yongbo, WANG Kai, YUAN Liang, et al. Numerical simulation and verification of unloading damage evolution characteristics of coal and rock mass during deep mining[J]. Journal of China Coal Society, 2019, 44(5): 1527−1535.
|
[8] |
鲁俊,尹光志,高恒,等. 真三轴加载条件下含瓦斯煤体复合动力灾害及钻孔卸压试验研究[J]. 煤炭学报,2020,45(5):1812−1823.
LU Jun, YIN Guangzhi, GAO Heng, et al. Experimental study on compound dynamic disaster and drilling pressure relief of gas-bearing coal under true triaxial loading[J]. Journal of China Coal Society, 2020, 45(5): 1812−1823.
|
[9] |
徐佑林,康红普,张辉,等. 卸荷条件下含瓦斯煤力学特性试验研究[J]. 岩石力学与工程学报,2014,33(S2):3476−3488.
XU Youlin, KANG Hongpu, ZHANG Hui, et al. Experimental study of mechanical properties of coal containing gas under unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3476−3488.
|
[10] |
秦虎,黄滚,贾泉敏. 含瓦斯煤岩卸围压声发射特性及能量特征分析[J]. 煤田地质与勘探,2015,43(5):86−89. doi: 10.3969/j.issn.1001-1986.2015.05.020
QIN Hu, HUANG Gun, JIA Quanmin. Analysis of characteristics of acoustic emission and energy of gas-bearing coal during unloading confining pressure[J]. Coal Geology & Exploration, 2015, 43(5): 86−89. doi: 10.3969/j.issn.1001-1986.2015.05.020
|
[11] |
胡克智,刘宝琛,马光,等. 煤矿的冲击地压[J]. 科学通报,1966(9):430−432.
|
[12] |
陈翠刚,周俊,王鹏,等. 冲击荷载下对称裂纹动态扩展规律研究[J]. 矿业研究与开发,2022,42(6):126−133.
CHEN Cuigang, ZHOU Jun, WANG Peng, et al. Study on dynamic propagation law of symmetrical crack under impact load[J]. Mining Research and Development, 2022, 42(6): 126−133.
|
[13] |
蔚斐,张通,刘文杰,等. 不同卸荷应力路径下煤样破坏特征实验研究[J]. 工矿自动化,2022,48(4):96−104.
YU Fei, ZHANG Tong, LIU Wenjie, et al. Study on failure characteristics of coal sample under different unloading stress paths[J]. Journal of Mine Automation, 2022, 48(4): 96−104.
|
[14] |
KIDYBINSKI A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(6): 295−304.
|
[15] |
齐庆新,彭永伟,李宏艳,等. 煤岩冲击倾向性研究[J]. 岩石力学与工程学报,2011,30(S1):2736−2742.
QI Qingxin, PENG Yongwei, LI Hongyan, et al. Study of bursting liability of coal and rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2736−2742.
|
[16] |
潘一山,耿琳,李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报,2010,35(12):1975−1978.
PAN Yishan, GENG Lin, LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society, 2010, 35(12): 1975−1978.
|
[17] |
代树红,王晓晨,潘一山,等. 模量指数评价煤的冲击倾向性的实验研究[J]. 煤炭学报,2019,44(6):1726−1731.
DAI Shuhong, WANG Xiaochen, PAN Yishan, et al. Experimental study on the evaluation of coal burst tendency utilizing modulus index[J]. Journal of China Coal Society, 2019, 44(6): 1726−1731.
|
[18] |
宫凤强,闫景一,李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报,2018,37(9):1993−2014.
GONG Fengqiang, YAN Jingyi, LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993−2014.
|
[19] |
杨健锋,柴敬,张丁丁,等. 基于黏聚裂纹模型的煤岩体韧性断裂机制研究[J]. 岩石力学与工程学报,2021,40(S2):3014−3023.
YANG Jianfeng, CHAI Jing, ZHANG Dingding, et al. Study on ductile fracture mechanism of coal and rock mass based on cohesive crack model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3014−3023.
|
[20] |
杨健锋,梁卫国,陈跃都,等. 不同水损伤程度下泥岩断裂力学特性试验研究[J]. 岩石力学与工程学报,2017,36(10):2431−2440.
YANG Jianfeng, LIANG Weiguo, CHEN Yuedu, et al. Experiment research on the fracturing characteristics of mudstone with different degrees of water damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2431−2440.
|
[21] |
韦猛,苏涛,张宁馨. 高地应力隧道卸压爆破本构方程研究[J]. 煤矿安全,2018,49(10):207−212.
WEI Meng, SU Tao, ZHANG Ningxin. Study on constitutive equation of pressure relief blasting of high geo-stress tunnel[J]. Safety in Coal Mines, 2018, 49(10): 207−212.
|
[22] |
YANG Jianfeng, LIAN Haojie, LI Li. Fracturing in coals with different fluids: an experimental comparison between water, liquid CO2, and supercritical CO2[J]. Scientific Reports, 2020, 10(1): 1−15. doi: 10.1038/s41598-019-56847-4
|
[23] |
宫凤强,赵英杰,王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J]. 煤炭学报,2022,47(5):1974−2010.
GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5): 1974−2010.
|
1. |
李小刚,唐政,朱静怡,杨兆中,李扬,谢鹏,廖宇. 深层煤岩气压裂研究进展与展望. 天然气工业. 2024(10): 126-139 .
![]() |