Citation: | WEN Zhiqiang, YANG Ke, HE Xiang, et al. Research on temperature effect of consolidation and bearing capacity of multi-source coal-based solid waste backfill[J]. Safety in Coal Mines, 2024, 55(4): 134−142. DOI: 10.13347/j.cnki.mkaq.20230528 |
In order to study the consolidation bearing capacity of coal-based solid waste paste backfill in deep high ground temperature environment of coal mine, uniaxial compression and acoustic emission tests were used to test the strength and failure characteristics of paste backfill under different curing temperature conditions (20 ℃, 35 ℃ and 50 ℃) and ages (3 d, 7 d, 14 d and 28 d). The microstructure and mineral composition of the filling cement were measured by SEM, and the influence of curing temperature on the hydration reaction was revealed from the microscopic point of view. The results show that: with the increase of curing temperature, its influence on hydration reaction gradually changes from promotion to inhibition, and the 28 d compressive strength reaches the maximum at 35 ℃; acoustic emission events mainly occur in the compaction and failure stages. The increase of curing temperature promotes the activity of acoustic emission in advance, and the failure mode of filling body gradually changes from ductile failure to brittle failure; due to the thermal damage, high temperature curing accelerates the early hydration reaction rate of the filling body, and causes damage to the C-S-H and pore structure of the filling body in the later stage of curing, which has an adverse effect on the increase of its long-term strength.
[1] |
张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong, ZHANG Qiang, ZHOU Nan, et al. Research progress and prospect of coal-based solid waste backfilling mining technology[J]. Journal of China Coal Society, 2022, 47(12): 4167−4181.
|
[2] |
杨科,魏祯,赵新元,等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(S2):925−935.
YANG Ke, WEI Zhen, ZHAO Xinyuan, et al. Theory and technology of green filling mining of solid waste underground in coal power base of Yellow River Basin[J]. Journal of China Coal Society, 2021, 46(S2): 925−935.
|
[3] |
孟卿. 宁夏灵武矿区地温状况及热害分布规律研究[D]. 北京:中国地质大学(北京),2019.
|
[4] |
王勇,吴爱祥,王洪江,等. 初始温度条件下全尾胶结膏体损伤本构模型[J]. 工程科学学报,2017,39(1):31−38.
WANG Yong, WU Aixiang, WANG Hongjiang, et al. Damage constitutive model of cemented tailing paste under initial temperature effect[J]. Chinese Journal of Engineering, 2017, 39(1): 31−38.
|
[5] |
戴元志,李平,白银,等. 低温下胶结充填体温度场和强度时变规律研究[J]. 河北工程大学学报(自然科学版),2020,37(2):80−87. doi: 10.3969/j.issn.1673-9469.2020.02.013
DAI Yuanzhi, LI Ping, BAI Yin, et al. Study on the time-varying law of temperature field and strength of cemented paste backfill at low temperature[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2020, 37(2): 80−87. doi: 10.3969/j.issn.1673-9469.2020.02.013
|
[6] |
刘炜震,郭忠平,黄万朋,等. 不同温度养护后胶结充填体三轴卸围压力学特性试验研究[J]. 岩石力学与工程学报,2022,41(11):2268−2282.
LIU Weizhen, GUO Zhongping, HUANG Wanpeng , et al. Experimental study on mechanical characteristics under triaxial unloading confining pressure of cemented backfill after curing at different temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(11): 2268−2282.
|
[7] |
白丽伟,赵润康,屈春来,等. 养护温度对胶结充填体力学特性的影响试验研究[J]. 黄金,2021,42(11):33−38. doi: 10.11792/hj20211106
BAI Liwei, ZHAO Runkang, QU Chunlai, et al. Experimental research on the influence of curing temperature on the mechanical properties of cemented filling body[J]. Gold, 2021, 42(11): 33−38. doi: 10.11792/hj20211106
|
[8] |
FALL M, CELESTIN J C, POKHAREL M. A contribution to understanding the effects of curing temperature on the properties of mine cemented tailings backfill[J]. Engineering Geology, 2010, 114: 397−400. doi: 10.1016/j.enggeo.2010.05.016
|
[9] |
FALL M, POKHAREL M. Coupled effect of sulphate and temperature on the strength development of cemented tailings backfill: Portland cement-paste backfill[J]. Cement and Concrete Composites, 2010, 32: 819−822. doi: 10.1016/j.cemconcomp.2010.08.002
|
[10] |
江飞飞,周辉,盛佳,等. 温度和龄期对砾石砂胶结充填体物理力学性能的影响[J].中南大学学报(英文版),2020,27(10):2999−3012. doi: 10.1007/s11771-020-4524-6
JIANG Feifei, ZHOU Hui, SHENG Jia, et al. Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills[J]. Journal of Central South University, 2020, 27(10): 2999−3012. doi: 10.1007/s11771-020-4524-6
|
[11] |
徐文彬,万昌兵,田喜春. 温度裂隙对充填体强度耦合效应及裂纹扩展模式[J]. 采矿与安全工程学报,2018,35(3):612−619.
XU Wenbin, WANG Changbing, TIAN Xichun. Coupling effect of temperature and fracture on the strength and crack propagation mode of backfill mass[J]. Journal of Mining & Safety Engineering, 2018, 35(3): 612−619.
|
[12] |
WU D, CAI S. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill[J]. Journal of Central South University, 2015, 22(5): 1956−1964. doi: 10.1007/s11771-015-2715-3
|
[13] |
陈秋松,张琦,齐冲冲,等. 磷石膏充填体强度和浸出毒性的温变规律[J]. 中国有色金属学报,2021,31(4):1084−1095. doi: 10.11817/j.ysxb.1004.0609.2021-39736
CHEN Qiusong, ZHANG Qi, QI Chongchong, et al. Temperature-depending characteristics of strength and leaching toxicity of phosphogympsum-based cemented paste backfill[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1084−1095. doi: 10.11817/j.ysxb.1004.0609.2021-39736
|
[14] |
张鹏,张文生,韦江雄,等. 养护温度对赤泥-矿渣碱激发胶凝材料强度和水化产物的影响[J]. 新型建筑材料,2017,44(10):1−3. doi: 10.3969/j.issn.1001-702X.2017.10.001
ZHANG Peng, ZHANG Wensheng, WEI Jiangxiong, et al. Influence of curing conditions on the strength, hydration properties of geopolymer synthesized from red mud and slag[J]. New Building Materials, 2017, 44(10): 1−3. doi: 10.3969/j.issn.1001-702X.2017.10.001
|
[15] |
LIU W, CHEN J, GUO Z, et al. Mechanical properties and damage evolution of cemented coal gangue-fly ash backfill under uniaxial compression: Effects of different curing temperatures[J]. Construction and Building Materials, 2021, 305: 124820. doi: 10.1016/j.conbuildmat.2021.124820
|
[16] |
LIU W, GUO Z, WANG C, et al. Physico-mechanical and microstructure properties of cemented coal gangue-fly ash backfill: Effects of curing temperature[J]. Construction and Building Materials, 2021, 299: 124011. doi: 10.1016/j.conbuildmat.2021.124011
|
[17] |
华心祝,常贯峰,刘啸,等. 多源煤基固废充填体强度演化规律及声发射特征[J]. 岩石力学与工程学报,2022(8):1536−1551.
HUA Xinzhu, CHANG Guanfeng, LIU Xiao, et al. Strength evolution law and acoustic-emission characteristics of multi-source, coal-based filling body of solid wastes[J]. Chinese Journal of Rock Mechanics and Engineering, 2022(8): 1536−1551.
|
[18] |
黄正栋,张东峰,张小强. 沿空留巷巷旁充填材料性能优化研究[J]. 煤矿安全,2021,52(8):59-65.
HUANG Zhengdong, ZHANG Dongfeng, ZHANG Xiaoqiang. Optimization study on filling material beside gob-side entry retaining[J]. Safety in Coal Mines, 2021, 52(08): 59-65+74.
|
[19] |
赵志研. 大采高倾斜长壁工作面沿空留巷围岩控制技术[J]. 煤矿安全,2022,53(04):103−112.
ZHAO Zhiyan. Surrounding rock control technology of gob-side entry retaining in inclined longwall face with large mining height[J]. Safety in Coal Mines, 2022, 53(04): 103−112.
|
[20] |
段运,王起才,杨子江,等. 蒸养对高强机制砂混凝土的热损伤效应研究[J]. 兰州交通大学学报,2022,41(5):6−12.
DUAN Yun, WANG Qicai, YANG Zijiang, et al. Research on the thermal damage effect of steam curing on high strength manufactured sand concrete[J]. Journal of Lanzhou Jiaotong University, 2022, 41(5): 6−12.
|
[21] |
冯国瑞,任亚峰,张绪言,等. 塔山矿充填开采的粉煤灰活性激发实验研究[J]. 煤炭学报,2011,36(5):732−737.
FENG Guorui, REN Yafeng, ZHANG Xuyan, et al. The activating experimental research of fly ash for mining filling material in Tashan Mine[J]. Journal of China Coal Society, 2011, 36(5): 732−737.
|
1. |
王金成. 煤层注水对煤矿粉尘和瓦斯灾害的影响分析. 煤. 2025(02): 54-57 .
![]() | |
2. |
郭庆彪,谢扬,汪锋,郑美楠. 废弃采空区封存CO_2地表形变特征模拟研究. 煤矿安全. 2024(05): 1-10 .
![]() |