Citation: | GAO Guangyi. Experimental research on microbial dust suppressant for solidified dust based on MICP[J]. Safety in Coal Mines, 2024, 55(3): 91−98. DOI: 10.13347/j.cnki.mkaq.20222042 |
In order to reduce the concentration of coal dust in open-pit coal mines, reduce and prevent the harm of coal dust, based on the microbial induced calcite precipitation solidification dust technology, the influence of environmental factors(temperature, pH) on the growth of Bacillus pasteuri was explored, and the effects of bacterial concentration, cement concentration and nutrient solution concentration on the solidification effect were evaluated by measuring the production of CaCO3. Through the experiment, the matrix analysis method was used to optimize the proportion of Bacillus pasteuri microbial dust suppressant and a new type of high-efficiency and environmentally friendly microbial dust suppressant for mining was proposed. The results show that the suitable culture conditions of Bacillus pasteuri are 30 ℃-35 ℃, pH 7.5, and the microbial dust suppressant is suitable for opencast coal mines under high temperature and moderate alkaline environment; there was a positive correlation between the concentration and the bacterial concentration. With the increase of cement concentration (urea, calcium chloride), the generation amount of CaCO3 increases and then decreases; Bacillus pasteurelli microbial dust suppressant has good permeability, strong wind resistance, water retention, rain resistance and other comprehensive properties; the optimization scheme of the composition ratio of Bacillus pasteuri microbial dust suppressant is: the OD600 value of Bacillus pasteuri bacteria solution is 1, the cementing solution (urea, calcium chloride mixed solution)is 0.5 mol/L, and the nutrient solution is 2 g/L.
[1] |
袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1−7.
YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society, 2020, 45(1): 1−7.
|
[2] |
曹丽琼,程芳琴,武海波,等. 以废可乐瓶为原料提取乙二醇制备煤尘抑制剂[J]. 山西化工,2010,30(6):1−4.
CAO Liqiong, CHENG Fangqin, WU Haibo, et al. Recycling of coke bottle waste into glycol for coal dust inhibitor[J]. Shanxi Chemical Industry, 2010, 30(6): 1−4.
|
[3] |
梁文俊,任思达,李坚,等. 农业废弃物秸秆制备环保型抑尘剂的研究[J]. 农业与技术,2018,38(22):7−8.
|
[4] |
李斌,丁建飞,李昭水. 新型环保抑尘剂的制备及特性[J]. 煤炭技术,2019,38(5):196−198.
LI Bin, DING Jianfei, LI Zhaoshui. Preparation and characterization of new coal dust inhibitor based on biological modification[J]. Coal Technology, 2019, 38(5): 196−198.
|
[5] |
曹水静,杨志远,贺宇,等. 井下煤尘泡沫抑尘剂制备和性能研究[J]. 煤炭工程,2017,49(3):87−89.
CAO Shuijing, YANG Zhiyua, HE Yu, et al. Preparation and performance of foam dust suppression agent for underground coal dust[J]. Coal Engineering, 2017, 49(3): 87−89.
|
[6] |
陈曦,张志强,李仲文,等. 基于表面力测量的煤尘润湿剂与煤相互作用研究[J]. 煤矿安全,2022,53(10):147−151.
CHEN Xi, ZHANNG Zhiqiang, LI Zhongwen, et al. Study on interaction between coal dust wetting agent and coal based on surface force measurement[J]. Safety in Coal Mines, 2022, 53(10): 147−151
|
[7] |
杨树莹,周磊,杨林军,等. 高分子抑尘剂对褐煤矿场细颗粒物的抑制特性[J]. 煤炭学报,2019,44(2):528−535.
YANG Shuying, ZHOU Lei, YANG Linjun, et al. Inhibition characteristics of polymer suppressant on fine particles in lignite mines[J]. Journal of China Coal Society, 2019, 44(2): 528−535.
|
[8] |
耿卫国,宋丽华,宋强,等. 煤矿粉尘化学抑尘剂的试验研究[J]. 煤矿安全,2018,49(11):33−38.
GENG Weiguo, SONG Lihua, SONG Qiang, et al. Experimental study on chemical dust suppressant of coal mine dust[J]. Safety in Coal Mines, 2018, 49(11): 33−38.
|
[9] |
荣辉,钱春香,李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报,2013,41(3):314−319.
RONG Hui, QIAN Chunxiang, LI Zhilong. Cementation mechanism of microbe cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 314−319.
|
[10] |
SUN X H, MIAO L C, WU L Y, et al. Improvement of biocementation at low temperature based on Bacillus megaterium[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 7191−7202. doi: 10.1007/s00253-019-09986-7
|
[11] |
钱春香,王安辉,王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学,2015,36(6):1537−1548.
QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537−1548.
|
[12] |
王安辉,范凌志. 微生物抑尘剂的研制方法探讨[J]. 山西建筑,2015,41(31):179−180.
WANG Anhui, FAN Linzhi. Discussion on the preparation and application of microbial dust suppressants[J]. Shanxi Architecture, 2015, 41(31): 179−180.
|
[13] |
OKWADHA G D O, LI J. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81(9): 1143−1148. doi: 10.1016/j.chemosphere.2010.09.066
|
[14] |
Al Q A, SOGA K, SANT A C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(8): 992−1001.
|
[15] |
KEYKHA H A, ASADI A, ZAREIAN M. Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil[J]. Geomicrobiology, 2017, 34(10): 889−894. doi: 10.1080/01490451.2017.1291772
|
1. |
程士宜. 不同温度-冲击载荷下煤的渗透率演化规律研究. 煤矿安全. 2024(08): 43-50 .
![]() | |
2. |
康俊强,简阔,傅雪海,申建,王一兵,段超超. 急倾斜煤储层水力压裂裂缝扩展研究. 煤矿安全. 2024(11): 49-60 .
![]() | |
3. |
熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 .
![]() |