• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
CHANG Wei, WANG Hao, XIN Chuangye, et al. Study on the influence of pressurized air jet on respiratory dust pollution in fully mechanized excavation face[J]. Safety in Coal Mines, 2024, 55(12): 115−122. DOI: 10.13347/j.cnki.mkaq.20241013
Citation: CHANG Wei, WANG Hao, XIN Chuangye, et al. Study on the influence of pressurized air jet on respiratory dust pollution in fully mechanized excavation face[J]. Safety in Coal Mines, 2024, 55(12): 115−122. DOI: 10.13347/j.cnki.mkaq.20241013

Study on the influence of pressurized air jet on respiratory dust pollution in fully mechanized excavation face

More Information
  • Received Date: July 04, 2024
  • Revised Date: July 29, 2024
  • In order to optimize the dust control flow field structure of the fully mechanized excavation face in coal mine, improve the dust control efficiency of the local ventilation system, achieve energy conservation and emission reduction in the mine, and low-carbon prevention and control of dust disasters, numerical simulation was used to study the respiratory dust pollution of the fully mechanized excavation face under different pressure air jet volume and action height conditions. The results showed that the pressure air jet volume is the main factor affecting the range of respiratory dust pollution. As the volume increases, the time for dust particle aggregation to escape to the working face decreases, the dust particle aggregation area continuously moves backward, and the range of respiratory dust pollution increases; the pressure air jet action height is the main factor affecting the degree of respiratory dust pollution in the area where the excavation driver is located. As the height increases, the overall range of dust pollution slightly increases, and the average dust mass concentration in the area where the excavation driver is located shows a trend of first increasing and then decreasing. Based on this, the optimal pressurized air jet volume was determined to be 200 m3/min and the optimal action height was 2 m. After on-site application, the respiratory dust concentration at the excavation driver’s site decreased by 55.4%, and the respiratory dust mass concentration in the rear area of the excavation machine decreased by more than 73%.

  • [1]
    朱晓彤,胡胜勇,孙健,等. 煤矿综掘工作面湿式控尘技术研究进展及展望[J]. 煤矿安全,2023,54(1):29−37.

    ZHU Xiaotong, HU Shengyong, SUN Jian, et al. Research progress and prospect of wet dust control technology in fully mechanized excavation face[J]. Safety in Coal Mines, 2023, 54(1): 29−37.
    [2]
    WANG H, CHENG W M, SA Z Y, et al. Experimental study of the effects of air volume ratios on the air curtain dust cleaning in fully mechanized working face[J]. Journal of Cleaner Production, 2021, 293: 126109. doi: 10.1016/j.jclepro.2021.126109
    [3]
    周福宝,袁亮,程卫民,等. 矿井粉尘职业健康防护技术2013—2023年研究进展[J]. 中国安全生产科学技术,2023,19(12):5−15.

    ZHOU Fubao, YUAN Liang, CHENG Weimin, et al. Research progress of mine dust occupational health protection technology in 2013-2023[J]. Journal of Safety Science and Technology, 2023, 19(12): 5−15.
    [4]
    顾大钊,李全生. 基于井下生态保护的煤矿职业健康防护理论与技术体系[J]. 煤炭学报,2021,46(3):950−958.

    GU Dazhao, LI Quansheng. Theoretical framework and key technologies of underground ecological protection based on coal mine occupational health prevention[J]. Journal of China Coal Society, 2021, 46(3): 950−958.
    [5]
    邱俊,苏正通,吴代赦,等. 煤矿粉尘健康风险综合评价研究[J]. 中国矿业,2021,30(11):155−162. doi: 10.12075/j.issn.1004-4051.2021.11.009

    QIU Jun, SU Zhengtong, WU Daishe, et al. Study on comprehensive health risk assessment of coal mine dust[J]. China Mining Magazine, 2021, 30(11): 155−162. doi: 10.12075/j.issn.1004-4051.2021.11.009
    [6]
    肖旸,孙帅强,杨雪儿,等. 可变角度新鲜风流下煤巷掘进长压短抽除尘效果数值模拟[J]. 煤矿安全,2023,54(1):38−45.

    XIAO Yang, SUN Shuaiqiang, YANG Xue’er, et al. Numerical simulation of dust removal effect of long pressure and short drainage in coal roadway tunneling with variable angle fresh air flow[J]. Safety in Coal Mines, 2023, 54(1): 38−45.
    [7]
    孙连胜. 控尘风筒出风口形式变化对掘进工作面粉尘运移的影响研究[J]. 煤矿安全,2023,54(8):45−51.

    SUN Liansheng. Study on the influence of air outlet form change of dust control air duct on dust transport in tunneling working face[J]. Safety in Coal Mines, 2023, 54(8): 45−51.
    [8]
    聂文,刘强,华贇,等. 岩巷综掘面抽尘参数影响粉尘污染扩散规律研究[J]. 金属矿山,2024(5):110−117.

    NIE Wen, LIU Qiang, HUA Yun, et al. Study on the influence of dust extraction parameters on the diffusion law of dust pollution in the fully mechanized excavation face of rock roadways[J]. Metal Mine, 2024(5): 110−117.
    [9]
    龚晓燕,翟项华,陈龙,等. 快掘面抽风口集尘参数变化下粉尘场优化模型研究[J]. 中国安全生产科学技术,2024,20(3):90−96.

    GONG Xiaoyan, ZHAI Xianghua, CHEN Long, et al. Study on dust field optimization model under change of dust collecting parameters of exhaust outlet at fast-tunneling face[J]. Journal of Safety Science and Technology, 2024, 20(3): 90−96.
    [10]
    冯恒原,李治刚,朱芷涵,等. 高瓦斯矿井综掘工作面粉尘运移规律及富集特征研究[J]. 中国安全生产科学技术,2023,19(10):59−65.

    FENG Hengyuan, LI Zhigang, ZHU Zhihan, et al. Study on dust migration law and enrichment characteristics of fully-mechanized heading face in high gas mines[J]. Journal of Safety Science and Technology, 2023, 19(10): 59−65.
    [11]
    TORNO S, TORAÑO J, ÁLVAREZ-FERNÁNDEZ I. Simultaneous evaluation of wind flow and dust emissions from conveyor belts using computational fluid dynamics (CFD) modelling and experimental measurements[J]. Powder Technology, 2020, 373: 310−322. doi: 10.1016/j.powtec.2020.06.061
    [12]
    WANG Z W, LI S G, REN T, et al. Respirable dust pollution characteristics within an underground heading face driven with continuous miner–A CFD modelling approach[J]. Journal of Cleaner Production, 2019, 217: 267−283. doi: 10.1016/j.jclepro.2019.01.273
    [13]
    HU S Y, GAO Y, FENG G R, et al. Characteristics of dust distributions and dust control measures around road-header drivers in mining excavation roadways[J]. Particuology, 2021, 58: 268−275. doi: 10.1016/j.partic.2021.03.017
    [14]
    蒋仲安,杨斌,张国梁,等. 高原矿井掘进工作面截割粉尘污染效应及通风控尘参数分析[J]. 煤炭学报,2021,46(7):2146−2157.

    JIANG Zhongan, YANG Bin, ZHANG Guoliang, et al. Analysis of dust pollution effect of cutting dust and ventilation control parameters at the heading face in plateau mines[J]. Journal of China Coal Society, 2021, 46(7): 2146−2157.
    [15]
    丁翠. 掘进巷道粉尘运移扩散规律研究进展[J]. 煤矿安全,2018,49(9):219−222.

    DING Cui. Research progress of dust movement and diffusion laws in excavation roadway[J]. Safety in Coal Mines, 2018, 49(9): 219−222.
    [16]
    CAI X J, NIE W, YIN S, et al. An assessment of the dust suppression performance of a hybrid ventilation system during the tunnel excavation process: Numerical simulation[J]. Process Safety and Environmental Protection, 2021, 152: 304−317. doi: 10.1016/j.psep.2021.06.007
    [17]
    胡胜勇,廖奇,王和堂,等. 高瓦斯煤层综掘工作面风流−粉尘两相流动特性[J]. 煤炭学报,2019,44(12):3921−3930.

    HU Shengyong, LIAO Qi, WANG Hetang, et al. Gas-solid two-phase flow at high-gassy fully mechanized within high gassy coal seam[J]. Journal of China Coal Society, 2019, 44(12): 3921−3930.
    [18]
    WANG H, SA Z Y, CHENG W M, et al. Effects of forced-air volume and suction region on the migration and dust suppression of air curtain during fully mechanized tunneling process[J]. Process Safety and Environmental Protection, 2021, 145: 222−235. doi: 10.1016/j.psep.2020.08.008
    [19]
    刘荣华,朱必勇,王鹏飞,等. 综掘工作面双径向旋流屏蔽通风控尘机理[J]. 煤炭学报,2021,46(12):3902−3911.

    LIU Ronghua, ZHU Biyong, WANG Pengfei, et al. Dust control mechanism of double radial swirl shielding ventilation in fully mechanized heading face[J]. Journal of China Coal Society, 2021, 46(12): 3902−3911.
    [20]
    王昊,辛创业,刘建,等. 综掘截割区域对尘-雾颗粒群逸散的影响规律研究[J]. 中国安全生产科学技术,2023,19(11):71−77.

    WANG Hao, XIN Chuangye, LIU Jian, et al. Study on influence law of cutting zone during fully mechanized excavation process on diffusion of dust-spray particles group[J]. Journal of Safety Science and Technology, 2023, 19(11): 71−77.
    [21]
    陈绍杰,祁银鸽,李改革. 压入式通风掘进巷道粉尘悬浮运移规律研究[J]. 煤矿安全,2022,53(4):178−182.

    CHEN Shaojie, QI Yinge, LI Gaige. Study on dust suspension law in driving roadway with forced ventilation[J]. Safety in Coal Mines, 2022, 53(4): 178−182.
  • Related Articles

    [1]ZHANG Qi, YANG Xiao, QIAO Boyang. Surrounding Rock Destruction Characteristics and Support Parameters Optimization of Mining Roadway in Jinjie Mine[J]. Safety in Coal Mines, 2019, 50(6): 219-223,229.
    [2]TANG Qingbao, YANG Gang, ZHANG Qi, QIAO Boyang. Failure Characteristics and Support Parameters Optimization of Mining Roadway in Bulianta Mine[J]. Safety in Coal Mines, 2019, 50(4): 223-227,232.
    [3]GUAN Xiaoming, WANG Xuchun, NIE Qingke, ZHOU Huanzhu, YU Yunlong. Stability Analysis and Parameters Optimization of an Open-pit Slope[J]. Safety in Coal Mines, 2018, 49(5): 71-74.
    [4]ZHANG Jianlin, LI Hongxi, LIU Yanping. Experimental Research on Flow Field Simulation and Parameter Optimization of Ultrasonic Atomization Nozzle for Dust Suppression[J]. Safety in Coal Mines, 2017, 48(12): 41-43.
    [5]CHEN Daguang. Roadway Supporting Parameters Analysis and Process Optimization for Excavation and Bolting Integration[J]. Safety in Coal Mines, 2017, 48(10): 224-227,231.
    [6]DONG Jun, YU Guisheng, WANG Jinbao. Simulating Optimization of Process Parameters for Fire Prevention by Continuous Nitrogen Injection in Goaf of Fully Mechanized Caving Face[J]. Safety in Coal Mines, 2016, 47(7): 186-189.
    [7]ZHANG Feng, LIU Xuesheng, DUAN Huachao. Optimization of Support Parameters of Roadway With Soft Roof in Shallow Seam[J]. Safety in Coal Mines, 2014, 45(4): 180-182,186.
    [8]SUN Zhong-yong. Ventilation Parameters Optimization Control on the Goaf Gas Emission[J]. Safety in Coal Mines, 2012, 43(S1): 154-156.
    [9]SU Cai-quan. Optimization Design of Supporting Parameter for Extreme Soft Surrounding Rock Under the Influence of Mining[J]. Safety in Coal Mines, 2012, 43(12): 197-200.
    [10]LI Zhi-qiang, TANG Xu, WANG Zhao-feng. Regional Outburst Prevention Test by Coal Seam Infusion Humidification and Permeation Fluid Mechanics Numerical Solution of Parameter Optimization[J]. Safety in Coal Mines, 2012, 43(9): 10-13.

Catalog

    Article views (19) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return