Citation: | XIE Jian, XU Daqiang, HU Wei, et al. Grouting reconstruction of loose aquifer overlying work face and its effect test[J]. Safety in Coal Mines, 2023, 54(10): 168−175. DOI: 10.13347/j.cnki.mkaq.2023.10.022 |
In order to liberate the shallow quaternary loose aquifer coal pillar resources, taking the 1010-1 working face of the first mining area of Wugou Coal Mine as the test object, the grouting reinforcement test of quaternary loose aquifer and the weathering zone of the bedrock at the bottom was carried out by using the splitting grouting method and the grouting technology combining continuous and intermittent grouting. The results show that: the quaternary loose aquifer control area has complex lithology and weak water content, and mainly receives runoff recharge from the lateral area. The grouting reconstruction project adopts the water displacement and sand fixation scheme of the ground straight hole combined with the directional oblique hole row by row; the strength of the mixed slurry is subject to the ratio of fly ash, and the strength and stone rate of the mixed slurry are higher than those of the cement net slurry. When the fly ash content is 20%, the stone rate is the highest; the diffusion of grout in the quaternary loose aquifer is very uneven, the grouting process needs to control the grout diffusion range by controlling the grouting amount, the influence of grouting on the surface is reflected in the grout diffusion and pressure conduction, and the pressure conduction is the main one; after injection, the true density and water content of the core hole samples slightly increased, while the compressive strength, tensile strength and shear strength slightly increased; with the increase of sampling depth, the compressive strength of the rock layer in the wind-oxidized zone of bedrock increased first, then decreased and then increased, and the compressive strength increased about 2-5 times.
[1] |
范立民,马雄德. 浅埋煤层矿井突水溃沙灾害研究进展[J]. 煤炭科学技术,2016,44(1):8−12.
FAN Limin, MA Xiongde. Research progress of water inrush hazard in shallow buried coal seam mine[J]. Coal Science and Technology, 2016, 44(1): 8−12.
|
[2] |
郭龙辉,程桦,彭世龙,等. 厚松散层薄基岩开采覆岩离层裂隙演变与下沉分形特征研究[J]. 煤矿安全,2020,51(9):59−64.
GUO Longhui, CHENG Hua, PENG Shilong, et al. Study on evolution and subsidence fractal characteristics of overlying strata in thick loose layers and thin bedrocks[J]. Safety in Coal Mines, 2020, 51(9): 59−64.
|
[3] |
LI C C. Field observations of rock bolts in high stress rock masses[J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 491−496. doi: 10.1007/s00603-009-0067-8
|
[4] |
MORTAZAVI A, MAADIKHAH A. An investigation of the effects of important grouting and rock parameters on the grouting process[J]. Geomechanics and Geoengineering, 2016, 11(3): 1−17.
|
[5] |
BOBET A, EINSTEIN H H. Tunnel reinforcement with rock bolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 100−123. doi: 10.1016/j.tust.2010.06.006
|
[6] |
沈君,刘保国,陈景,等. 辉绿岩裂隙注浆体力学特性试验研究[J]. 岩石力学与工程学报,2020,39(S1):2804−2817.
SHEN Jun, LIU Baoguo, CHEN Jing, et al. Experimental study on mechanical properties of diabase fracture grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2804−2817.
|
[7] |
王晓蕾,熊祖强,袁印,等. 破碎围岩无机材料注浆加固机理及其应用研究[J]. 地下空间与工程学报,2022,18(1):112−119.
WANG Xiaolei, XIONG Zuqiang, YUAN Yin, et al. Research and application of reinforcement mechanism of inorganic materials in broken rock[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(1): 112−119.
|
[8] |
陈安生,陈柯,吴义. 饱和松散砂层中挖孔桩双液注浆截水帷幕的实施[J]. 工业建筑,2013,43(7):150−154.
CHEN Ansheng, CHEN Ke, WU Yi. Experimental study on two-shot grouting for waterproof curtain of man-hole-pile in saturated loose sand layer[J]. Industrial Construction, 2013, 43(7): 150−154.
|
[9] |
张民庆,张文强,孙国庆. 注浆效果检查评定技术与应用实例[J]. 岩石力学与工程学报,2006(S2):3909−3918.
ZHANG Minqing, ZHANG Wenqiang, SUN Guoqing. Evaluation technique of grouting effect and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(S2): 3909−3918.
|
[10] |
刘洋,王春刚,梁向阳,等. 等巴拉素煤矿强富水煤层注浆改造设计[J]. 煤矿安全,2020,51(2):146−151.
LIU Yang, WANG Chungang, LIANG Xiangyang, et al. Grouting reconstruction design of strong water-rich coal seam in Balasu Coal Mine[J]. Safety in Coal Mines, 2020, 51(2): 146−151.
|
[11] |
谢聪. 朱仙庄煤矿“四含”砂砾层劈裂注浆浆液扩散规律研究[D]. 徐州: 中国矿业大学, 2019.
|
[12] |
李存禄,余大有,翁洪周,等. 厚松散层地面高压注浆参数现场试验确定方法[J]. 煤炭工程,2021,53(1):65−70.
LI Cunlu, YU Dayou, WENG Hongzhou, et al. Parameters determination for ground high pressure grouting in thick alluvium through field test[J]. Coal Engineering, 2021, 53(1): 65−70.
|
[13] |
范吉宏,戴德胜,周均民,等. 深厚松散层地面注浆压力与扩散半径确定方法[J]. 建井技术,2020,41(6):18−23.
FAN Jihong, DAI Desheng, ZHOU Junming, et al. Method to define pressure and diffusion radius of grouting at surface ground of deep and thick loose strata[J]. Mine Construction Technology, 2020, 41(6): 18−23.
|
[14] |
刘天航. 五沟煤矿1010工作面松散含水层注浆改造可行性研究[D]. 合肥: 安徽建筑大学, 2020.
|
[15] |
刘孝孔,绪瑞华,赵艳鹏,等. 厚松散层邻近既有立井井筒地面注浆地层加固技术[J]. 煤炭科学技术,2022(7):127−134.
LIU Xiaokong, XU Ruihua, ZHAO Yanpeng, et al. Ground grouting stratum reinforcement technology for thick loose layer adjacent to existing shaft[J]. Coal Science and Technology, 2022(7): 127−134.
|
[16] |
张华磊,涂敏,程桦,等. 薄基岩采场覆岩破断机理及风氧化带整体注浆加固技术[J]. 煤炭学报,2018,43(8):2126−2132.
ZHANG Hualei, TU Min, CHENG Hua, et al. Breaking mechanism of overlying strata under thick unconsolidated layers and integrated grouting reinforcement technology for wind oxidation zone[J]. Journal of China Coal Society, 2018, 43(8): 2126−2132.
|
[17] |
袁克阔,李雄伟,徐拴海,等. 巨厚富水松散砂层溃砂灾害现状与注浆固沙技术研究及应用[J]. 水利与建筑工程学报,2017,15(4):32−38.
YUAN Kekuo, LI Xiongwei, XU Shuanhai, et al. Underground grouting-reconstruction technology for thick water-rich sand layer and its engineering practice[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(4): 32−38.
|
[18] |
余岩,王传兵,徐燕飞,等. 工作面上覆风化带岩层地面注浆加固效果分析[J]. 煤炭工程,2021,53(5):68−73.
YU Yan, WANG Chuanbing, XU Yanfei, et al. Effect of ground grouting on overlying weathered zone of working face[J]. Coal Engineering, 2021, 53(5): 68−73.
|
[19] |
方杰,李全生,杜文凤,等. 神东矿区浅埋深薄基岩上覆厚松散层水害治理[J]. 煤田地质与勘探,2016,44(4):94−97. doi: 10.3969/j.issn.1001-1986.2016.04.018
FANG Jie, LI Quansheng, DU Wenfeng, et al. Water disaster control in overlying thick loose layer on bedrock in Shendong coal mining area[J]. Coal Geology & Exploration, 2016, 44(4): 94−97. doi: 10.3969/j.issn.1001-1986.2016.04.018
|
[20] |
王振荣. 厚松散含水层煤层开采突水溃沙防治技术[J]. 煤炭科学技术,2016,44(8):46−51.
WANG Zhenrong. Water inrush and sand inrush prevention and control technology for coal mining in seam with thick and loose aquifer[J]. Coal Science and Technology, 2016, 44(8): 46−51.
|
[21] |
国家安全生产监督管理总局, 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.
|
[1] | WANG Xu, YIN Shangxian, CAO Min, XIA Xiangxue, LIU Dewang, ZHANG Jinfu, WU Chuanshi, LI Qixing, WANG Haorui, LU Rui. Microscopic pore of sandstone in Longde Coal Mine based on FHH fractal theory[J]. Safety in Coal Mines, 2024, 55(10): 179-189. DOI: 10.13347/j.cnki.mkaq.20231401 |
[2] | JIN Feiyang, CHEN Xuexi, GAO Zeshuai. Study on multi-fractal characteristics of micropores in coal with different metamorphic degrees[J]. Safety in Coal Mines, 2024, 55(3): 9-17. DOI: 10.13347/j.cnki.mkaq.20222023 |
[3] | WANG Xueqing, ZHAO Yunmeng, FENG Ying, WANG Zhuangzhuang, LI Yongchao, CHEN Bo, DONG Ze, WU Shuaijun. Simulation of cracks propagation and fractal characteristics of composite rock strata with holes and fractures[J]. Safety in Coal Mines, 2024, 55(1): 42-49. DOI: 10.13347/j.cnki.mkaq.20221467 |
[4] | FENG Yulong, SI Qing, WANG Hao, LI Feng. Study on fractal characteristics of coal pore before and after oxidation treatment[J]. Safety in Coal Mines, 2021, 52(2): 18-22. |
[5] | LIU Jikun, LI Chengzhu, WANG Cuixia. Effect of Pore Fractal Characteristics of Gas Coal on Gas Adsorption[J]. Safety in Coal Mines, 2020, 51(9): 1-5,10. |
[6] | NIE Fengxiang, LIU Yongjie, GUO Haifeng. Study on Influence of Fault Structure on Laws of Gas Occurrence in Kilometer Deep Mine Based on Fractal Theory[J]. Safety in Coal Mines, 2019, 50(3): 150-153,158. |
[7] | HE Zhenggang. Fractal Study on Acoustic Emission Waveform of Rock Under Different Stress States[J]. Safety in Coal Mines, 2017, 48(11): 57-60. |
[8] | YAO Yupeng, JIANG Bo, LI Ming, QU Zhenghui, LIU Jiegang. Study on Fracture and Seepage Pore Fractal Characteristics of Tectonic Coal[J]. Safety in Coal Mines, 2016, 47(8): 5-8. |
[9] | GUO Ning, YU Junqi, JIN Yunzhang, LU Yantao, CHEN Baicheng. R/S Analysis for Coal Mine Different Grade Accidents Based on Fractal Theory[J]. Safety in Coal Mines, 2016, 47(5): 242-244. |
[10] | DONG Chao, WANG En-yuan, JIN Ming-yue, SUN Hao-bo, WANG Si-heng. Automatic Identification First Arrival of Microseismic Waves by Fractal Box-counting Dimension[J]. Safety in Coal Mines, 2013, 44(6): 198-201. |
1. |
刘正茂,李虎,张智柳,郑植,朱阳涛,高陈亮,王国普,丁锋,黄仁屏,邓良涛. 考虑加载角度影响的煤岩组合体巴西劈裂试验研究. 能源与环保. 2024(12): 248-253 .
![]() |