• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
NIE Fengxiang, LIU Yongjie, GUO Haifeng. Study on Influence of Fault Structure on Laws of Gas Occurrence in Kilometer Deep Mine Based on Fractal Theory[J]. Safety in Coal Mines, 2019, 50(3): 150-153,158.
Citation: NIE Fengxiang, LIU Yongjie, GUO Haifeng. Study on Influence of Fault Structure on Laws of Gas Occurrence in Kilometer Deep Mine Based on Fractal Theory[J]. Safety in Coal Mines, 2019, 50(3): 150-153,158.

Study on Influence of Fault Structure on Laws of Gas Occurrence in Kilometer Deep Mine Based on Fractal Theory

More Information
  • Published Date: March 19, 2019
  • Taking Panxi Coal Mine, a kilometer deep mine in Xinwen Mining Area as an example, the spatial distribution characteristics of 19# coal seam fault in Houliu Mining Area are studied, and the fault structure is quantitatively studied by fractal theory. The results show that the fault structure is complex in the research area of Panxi Coal Mine, and the overall “W” shape is spread from the northwest to the southeast, which has obvious influence on gas occurrence. Fractal dimension can reflect the complexity of fault structure. The larger the fractal dimension is, the more complicated the fault structure is. The fractal dimension of Panxi Coal Mine is mostly between 0.7 and 1.6. In the areas with large fractal dimensions, the gas content is relatively large. This study has important practical application value for revealing the influence of faults on gas occurrence.
  • [1]
    林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,2006,16(5):42.
    [2]
    Creedy D P. Geological controls on the formation and distribution of gas in British coal measure strata[J]. International Journal of Coal Geology, 1988, 10(1): 1.
    [3]
    Shepherd J, Rixon L K, Griffiths L. Outbursts and geological structures in coal mines: a review[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 267-283.
    [4]
    陈闯,崔洪庆.地质因素对祁南矿瓦斯赋存的控制特征[J].煤矿安全,2015,46(11):27-30.
    [5]
    潘怡.郭家河井田煤层气富集主控因素与富集区预测研究[D].西安:西安科技大学,2017:31-33.
    [6]
    周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999:17-24.
    [7]
    张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005:55-90.
    [8]
    季淮君,李增华,刘震,等.涡北煤矿地质构造对瓦斯涌出规律的影响[J].中国煤炭,2011,37(11):26-28.
    [9]
    毛党龙,刘敏,武静.金竹山矿区地质构造特征及其对瓦斯分布的控制作用[J].煤矿安全,2017,48(8):151-154.
    [10]
    朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011:12-18.
    [11]
    谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24.
    [12]
    武昱东,琚宜文,侯泉林,等.断层分层信息维及其在深部煤炭开采地质条件预测中的应用[J].煤炭学报,2010,35(8):1323-1330.
    [13]
    汪宏志,孙林,胥翔,等.基于分形理论的芦岭煤矿8煤层顶板断裂构造复杂程度研究[J].中国煤炭地质,2012,24(6):22-25.
    [14]
    杨高峰,卫金善,窦文武,等.长平井田断层发育复杂程度及其演化研究[J].能源与环保,2017,39(6):78-81.
    [15]
    高永璋,张寿庭,孙社良,等.新疆塔什库尔干-莎车一带断裂体系的分形特征及找矿预测[J].现代地质,2011,25(1):101-107.
    [16]
    梁俊杰,李格升,张尊华,等.球形火焰分形维数的计算方法[J].燃烧科学与技术,2016,22(1):26-32.
  • Related Articles

    [1]WANG Li, ZHANG Shihao, LI Lei, LI Guangli, ZHANG Qian. Development and application of miner safety rejection sensitivity scale[J]. Safety in Coal Mines, 2022, 53(4): 243-247.
    [2]MA Xiongwei, WANG Zhaofeng, YANG Tenglong, CHEN Jinsheng, LI Yanfei, XI Jie. Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas[J]. Safety in Coal Mines, 2021, 52(11): 147-153.
    [3]GAO Jianan, WU Fengliang. Calculation and sensitivity analysis of convective heat transfer coefficient between roadway wall and airflow[J]. Safety in Coal Mines, 2021, 52(9): 211-217.
    [4]ZHANG Yaqi, PENG Wenqing. Sensitivity Analysis of Influence of Many Factors on Coal Permeability Under Non-isostatic Deviating Stress[J]. Safety in Coal Mines, 2020, 51(9): 16-19.
    [5]HOU Jifeng, LIU Hao. Sensitivity Study on Main Controlling Factors of Borehole Shrinkage for Expansive Mudstone in Coal Mine[J]. Safety in Coal Mines, 2018, 49(6): 20-23.
    [6]QIAO Kang. Sensitivity Analysis of Low Rank Coal Reservoir and Its Influence on Coalbed Methane Drainage[J]. Safety in Coal Mines, 2018, 49(5): 14-16,22.
    [7]LI Ke, ZHANG Jinhong. Sensitivity Analysis on Main Factors of Inclined Coal Floor Damage Depth[J]. Safety in Coal Mines, 2017, 48(5): 210-213.
    [8]AN Zhaofeng, LI Shugang, LIN Haifei, DING Yang, LI Li. Orthogonal Experiment on Sensitivity of Impact Factors in Coal Adsorbing Methane[J]. Safety in Coal Mines, 2015, 46(2): 1-4.
    [9]ZHANG Peng, DU Ze-sheng, LI Zhong-hui, MA Yan-kun, XUE Shi-peng, WEI Li-na. Sensitivity Analysis of Outburst Hazard Evaluation Index Based on Principal Component Analysis[J]. Safety in Coal Mines, 2012, 43(4): 1-4.
    [10]CHOU Hai-sheng. Sensitivity Analysis of Effect Inspection Index for Working Face Outburst Prevention[J]. Safety in Coal Mines, 2012, 43(1): 83-85.
  • Cited by

    Periodical cited type(9)

    1. 吴晓春. 精确人员定位感应一体化识别卡的设计与实现. 化工自动化及仪表. 2025(02): 259-263+268 .
    2. 胡亮. 基于电力载波通信的精确定位读卡器设计. 化工自动化及仪表. 2025(02): 283-288 .
    3. 戴剑波. 基于国产芯片的矿车车皮精确定位标识卡. 煤矿安全. 2024(11): 222-226 . 本站查看
    4. 温贤培. 煤矿现场人员二维精确定位方法. 煤矿安全. 2023(01): 225-229 . 本站查看
    5. 樊启祥,林鹏,谢亮,刘元达,朱强,李果,辜斌,魏鹏程. 水电工程复杂场景施工资源定位管理技术研究. 水力发电学报. 2022(02): 113-124 .
    6. 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究. 煤矿安全. 2022(05): 99-105 . 本站查看
    7. 王恒晓. 基于多源数据融合的煤矿安全态势感知分析平台研究. 煤矿安全. 2022(08): 242-246 . 本站查看
    8. 张鹏,周代勇. 基于UWB的洗煤厂定位方法研究. 自动化与仪器仪表. 2022(08): 130-132+137 .
    9. 白怡明,曾祥玉,李杰,辛凤阳,郭晓松,朱金龙. 基于卡尔曼滤波算法的UWB+IMU组合精确定位系统在选煤厂中的应用. 选煤技术. 2022(05): 85-90 .

    Other cited types(0)

Catalog

    Article views (139) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return