煤粉沉积对支撑剂充填裂缝导流能力的影响
Influence of pulverized coal deposition on proppant-filled fracture conductivity
-
摘要: 为研究水力压裂过程中产出的煤粉沉积对支撑剂充填裂缝导流能力的影响机制,有效优化煤层气井的排采机制;运用支撑剂充填裂缝内多相流实验平台,制定相应的实验方案,针对煤层气井排采过程中产出的煤粉造成的支撑剂充填裂缝导流能力伤害问题进行实验研究。研究结果表明:悬浮煤粉质量分数越大,支撑剂充填裂缝出水时间越晚,出水点处压差值越大;且随着悬浮煤粉质量分数增大,裂缝内的煤粉沉积量呈线性增长趋势,煤粉沉积率先急剧增长到最大值后缓慢下降,支撑剂充填裂缝渗透率及导流能力呈下降趋势。Abstract: In order to study the influence mechanism of pulverized coal deposition produced in the process of hydraulic fracturing on the conductivity of proppant-filled fracture and effectively optimize the drainage mechanism of coalbed methane wells, the proppant-filled fracture multiphase flow experimental platform is used to formulate the corresponding experimental scheme. The damage of proppant filling fracture conductivity caused by pulverized coal produced in the drainage and production of coalbed methane wells is experimentally studied. The results show that the greater the mass fraction of suspended pulverized coal, the later the water outlet time of proppant-filled fracture, and the greater the pressure difference at the water outlet point; with the increase of suspended pulverized coal mass fraction, the pulverized coal deposition in the fracture shows a linear growth trend. The pulverized coal deposition first increases sharply to the maximum value and then decreases slowly. The permeability and conductivity of proppant filled fracture show a downward trend.
-
Keywords:
- hydraulic fracturing /
- proppant-filled fracture /
- pulverized coal /
- deposition /
- conductivity
-
-
[1] 张新民,赵靖舟,张培河,等.中国煤层气技术可采资源潜力[J].煤田地质与勘探,2007,35(4):23-26. ZHANG Xinmin, ZHAO Jingzhou, ZHANG Peihe, et al. China coalbed gas technically recoverable resource potential[J]. Coal Geology & Exploration, 2007, 35(4): 23-26.
[2] 郑民,李建忠,吴晓智,等.我国主要含油气盆地油气资源潜力及未来重点勘探领域[J].地球科学,2019, 44(3):833-847. ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. Potential of oil and nature gas resources of main hydrocarbon-bearing basins and key exploration fields in China[J]. Earth Science, 2019, 44(3): 833-847.
[3] 申鹏磊,吕帅锋,李贵山,等.深部煤层气水平井水力压裂技术-以沁水盆地长治北地区为例[J].煤炭学报,2021,46(8):2488-2500. SHEN Penglei, LYU Shuaifeng, LI Guanshan, et al, Hydraulic fracturing technology for deep coalbed methane horizontal wells: a case study in North Changzhi Area of Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(8): 2488-2500.
[4] 袁亮.煤及共伴生资源精准开采科学问题与对策[J].煤炭学报,2019,44(1):1-9. YUAN Liang. Scientific problems and countermeasures for precision mining of coal and associated resources[J]. Journal of China Coal Society, 2019, 44(1): 1-9.
[5] 毕彩芹,胡志方,汤达祯,等.煤系气研究进展与待解决的重要科学问题[J].中国地质,2021,48(2):402. BI Caiqin, HU Zhifang, TANG Dazhen, et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China, 2021, 48(2): 402.
[6] 甄怀宾,张伟强,吴飞鹏,等.煤层水力压裂影响因素数值模拟研究[J].非常规油气,2020,7(6):101-106. ZHEN Huaibin, ZHANG Weiqiang, WU Feipeng, et al. Numerical simulation study on influence factors of hydraulic fracturing of coal seam[J]. Unconventional Oil & Gas, 2020, 7(6): 101-106.
[7] 梁天成,才博,蒙传幼,等.水力压裂支撑剂性能对导流能力的影响[J].断块油气田,2021,28(3):403. LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 403.
[8] 金智荣,郭建春,赵金洲,等.不同粒径支撑剂组合对裂缝导流能力影响规律实验研究[J].石油地质与工程,2007,21(6):88-90. JIN Zhirong, GUO Jianchun, ZHAO Jinzhou, et al. Experimental study on influence law of different grain size proppants on fracture conductivity[J]. Petroleum Geology and Engineering, 2007, 21(6): 88-90.
[9] 郭建春,卢聪,赵金洲,等.支撑剂嵌入程度的实验研究[J].煤炭学报,2008,33(6):661-664. GUO Jianchun, LU Cong, ZHAO Jinzhou, et al. Experimental research on prop pant embedment[J]. Journal of China Coal Society, 2008, 33(6): 661-664.
[10] Wei Y C, Li C, Cao D Y, et al. The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106355. [11] Awoleke O O, Zhu D, Hill A D. New Propped-Fracture-Conductivity Models for Tight Gas Sands[J]. SPE Journal, 2016, 21(5): 1508-1517. [12] Chen Y D, Liang W G, Lian H J, et al. Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 121-140. [13] Gao D P, Liu Y W, Wang T J, et al. Experimental Investigation of the Impact of Coal Fines Migration on Coal Core Water Flooding[J]. Sustainability, 2018, 10(11): 1-12. -
期刊类型引用(3)
1. 毛崇昊,皇凡生,胡秋嘉,刘世奇,张聪,雷兴龙. 煤层气井排采中断后恢复模式对支撑裂缝内煤粉运移的影响. 煤矿安全. 2025(02): 58-66 . 本站查看
2. 胡皓,孔鹏,刘广景,张亚飞,张晓飞,张锦涛,任峻杉,张洲. 煤层气井筒单相流阶段煤粉动态沉降规律. 煤矿安全. 2025(02): 81-86 . 本站查看
3. 张惜图,胡胜勇,武玺,李国富,冯国瑞,王艳峰,陈召英. 煤粉侵入对支撑裂缝渗透率的动态影响规律. 煤炭学报. 2024(05): 2338-2346 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 34
- HTML全文浏览量: 0
- PDF下载量: 14
- 被引次数: 4