超临界CO2-H2O流体对煤渗流孔隙结构的影响
Influence of supercritical CO2-H2O fluid on seepage pore structure of coals
-
摘要: 深部煤层封存CO2过程中超临界CO2(SCCO2)对含水煤层渗流孔隙结构的改变很大程度上决定了CH4的采收率;为此,基于SCCO2地球化学反应装置,模拟了温度45 ℃、压力12 MPa下含水比例较低的SCCO2-H2O混合流体(质量比SCCO2∶H2O =10∶1)与不同煤阶煤(长焰煤、气煤和无烟煤)的相互作用;通过压汞法研究了煤渗流孔隙对SCCO2-H2O的响应,采用热力学分形模型探讨了SCCO2-H2O对渗流孔隙非均质性的影响。结果表明:SCCO2-H2O作用增加了所有煤样的孔隙度和孔体积,造成渗透率增加,但不同煤阶煤的渗流孔隙对SCCO2-H2O的响应表现出差异性;SCCO2-H2O作用后,长焰煤渗流孔体积显著增加,气煤中孔含量明显增大,无烟煤中-大孔体积略微升高;煤样渗流孔体积的增加可归因于矿物的化学反应和溶解迁移、水分的散失和吸附溶胀,其中矿物含量及其分布很大程度上决定了流体作用后不同煤阶煤渗流孔隙结构的变化特征;SCCO2-H2O作用降低了渗流孔隙的非均质性,造成孔隙结构趋于简单,孔隙连通性增强,渗透性提升。Abstract: In the process of CO2 storage in deep coal seam, the change of seepage pore structure in water-bearing coal seam by supercritical CO2 (SCCO2) greatly determines the recovery of CH4. Thus, the interaction of SCCO2-H2O mixture fluid with low water rate (mass ratio of SCCO2∶H2O =10∶1) with three rank coals (long flame coal, gas coal and anthracite) was simulated on a SCCO2 geo-reaction system under conditions of temperature of 45 ℃ and pressure of 12 MPa. Mercury intrusion method was used to address the response of seepage pore distribution to SCCO2-H2O exposure, and the influence of SCCO2-H2O on seepage pore heterogeneity of coal samples was discussed based on thermodynamic fractal model. The results show that SCCO2-H2O exposure causes an increase in porosity and pore volume of all coal samples. As a result, the permeability of coals increases. Nevertheless, the response of seepage pores to SCCO2-H2O varies with coal rank. After SCCO2-H2O exposure, the seepage pore volume of long flame coal shows a remarkable increase, the meso-porosity of gas coal rapidly increases, while slight increase in macropore and mesopore is found for anthracite. The increase in seepage pore volume of coal samples can be attributed to the chemical reaction, dissolution and mobilization of mineral matters, water loss, and sorption swelling. The content and distribution of mineral matters greatly determine the change in seepage pore structure of various rank coals. SCCO2-H2O interaction degrades the seepage pore heterogeneity of coal samples and thus smoothen pore structure, improve pore connectivity and increase permeability.
-
Keywords:
- coalbed methane /
- supercritical CO2 /
- mercury intrusion method /
- pore structure /
- seepage pore
-
-
[1] 桑树勋,王冉,周效志,等.论煤地质学与碳中和[J].煤田地质与勘探,2021,49(1):1-11. SANG Shuxun, WANG Ran, ZHOU Xiaozhi, et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration, 2021, 49(1): 1-11.
[2] 桑树勋.二氧化碳地质存储与煤层气强化开发有效性研究述评[J].煤田地质与勘探,2018,46(5):1-9. SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration, 2018, 46(5): 1-9.
[3] 马海军,李彬,李恒,等.基于低温氮吸附的动态超临界CO2对煤纳米孔隙结构的影响研究[J].煤矿安全,2021,52(1):30-35. MAI Haijun, LI Bin, LI Heng, et al. Influence of dynamic supercritical CO2 on nanopore structure of coals based on low-temperature nitrogen adsorption[J]. Safety in Coal Mines, 2021, 52(1): 30-35.
[4] Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242: 96-108. [5] 刘士奇,王恬,杜艺,等.超临界CO2对烟煤和无烟煤化学结构的影响[J].煤田地质与勘探,2018,46(5):19-25. LIU Shiqi, WANG Tian, DU Yi, et al. The effects of supercritical CO2 on the chemical structure of bituminous coal and anthracite[J]. Coal Geology & Exploration, 2018, 46(5): 19-25.
[6] WANG Tian, SANG Shuxun, LIU Shiqi, et al. Study on the evolution of the chemical structure characteristics of high rank coals by simulating the SCCO2-H2O reaction[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(2): 235-251. [7] Wang Q Q, Li W, Zhang D F, et al. Influence of high-pressure CO2 exposure on adsorption kinetics of methane and CO2 on coals[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 811-822. [8] Zhang D F, Li C, Zhang J, et al. Influences of dynamic entrainer-blended supercritical CO2 fluid exposure on high-pressure methane adsorptionon coals[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 180-191. [9] Hodot B B. Outburst of Coal and Coalbed Gas[M]. Moscow: National Mining Scientific and Technical Documentation Press, 1961. [10] Shi J Q, Durucan S. Gas storage and flow in coalbed reservoirs: implementation of a bidisperse pore model for gas diffusion in a coal matrix[J]. SPE Reservoir Evaluation and Engineering, 2005, 8(2): 169-175. [11] Zhang K Z, Cheng Y P, Jin K, et al. Effects of supercritical CO2 fluids on pore morphology of coal:Implications for CO2 geological sequestration[J]. Energy & Fuels, 2017, 31(5): 4731-4741. [12] Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal:a review[J]. International Journal of Coal Geology, 2011, 87(2): 49-71. [13] Massarotto P, Golding S D, Bae J S, et al. Changes in reservoir properties from injection of supercritical CO2 into coal seams-a laboratory study[J]. International Journal of Coal Geology, 2010, 82(3-4): 269-279. [14] LIU C J, WANG G X, Sang S X, et al. Changes in pore structure of anthracite coal associated with CO2 sequestration process[J]. Fuel, 2010, 89(10): 2665. [15] 刘长江,张琨,宋璠.CO2地质埋藏深度对高阶煤孔隙结构的影响[J].煤田地质与勘探,2018,46(5):32-36. LIU Changjiang, ZHANG Kun, SONG Fan, et al. Influences of burial depth on pore structure of high-rank coal during the CO2 storage process[J]. Coal Geology & Exploration, 2018, 46(5): 32-36.
[16] Li W, Liu H F, Song X X. Influence of fluid exposure on surface chemistry and pore-fracture morphology of various rank coals: implications for methane recovery and CO2 storage[J]. Energy & Fuels, 2017, 31(11): 12552-12569. [17] Farquhar S M, Pearce J K, Dawson G K W, et al. A fresh approach to investigating CO2 storage experimental CO2-water-rock interactions in a low-salinity reservoir system[J]. Chemical Geology, 2015, 399: 98. [18] Sun X X, Yao Y B, Liu D M, et al. Interactions and exchange of CO2 and H2O in coals an investigation by low-field NMR relaxation[J]. Scientific Reports, 2016, 6: 19919. [19] Pan J J. Modeling of coal swelling induced by water vapor adsorption[J]. Frontiers of Chemical Science & Engineering, 2012, 6(1): 94-103. [20] Mastalerz M, Drobniak A, Rupp J. Meso- and micropore characteristics of coal lithotypes: implications for CO2 adsorption[J]. Energy & Fuels, 2008, 22(6): 4049-4061. [21] Friesen W I, Mikula R J. Fractal dimensions of coal particles[J]. Journal of Colloid and Interface Science, 1987, 120(1): 263-271. [22] Zhang B Q, Liu W, Liu X F. Scale-dependent nature of the surface fractal dimension for bi-and multi-disperse porous solids by mercury porosimetry[J]. Applied Surface Science, 2006, 253(3): 1349-1355. [23] Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of seepage-pores of coals from China: an investigation on permeability of coals[J]. Computers & Geosciences, 2009, 35(6): 1159-1166. -
期刊类型引用(5)
1. 张遵国,钱清侠,陈毅,唐朝. 高压气态CO_2吸附/解吸作用对烟煤的孔隙结构影响研究. 安全与环境学报. 2025(01): 108-120 . 百度学术
2. 刘樱子,杨栋,李伟. 基于压汞法的过热水蒸气对煤系页岩渗流孔隙结构的影响研究. 煤炭技术. 2024(01): 10-13 . 百度学术
3. 李延河,李喜员,孙矩正,仝艳军,薛俊华,杨泉林,陈志恒. 煤对超临界CO_2的吸附实验及不同表征模型对比. 煤矿安全. 2023(06): 18-26 . 本站查看
4. 苏俊生,李彬,李伟,高文萱,林炜丽. 基于SAXS的超临界CO_2-H_2O流体对煤纳米孔隙结构的影响研究. 煤矿安全. 2023(11): 9-17 . 本站查看
5. 刘廷方,雷杰,黎杰,孙伟,张铎. 液态CO_2溶浸-酸化煤岩有机基团演化实验研究. 煤矿安全. 2023(11): 69-76 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 52
- HTML全文浏览量: 0
- PDF下载量: 36
- 被引次数: 6