煤对超临界CO2的吸附实验及不同表征模型对比
Adsorption experiments of supercritical CO2 by coals and comparisons of different description models
-
摘要: 煤对超临界CO2的吸附特征决定了煤层的CO2地质封存能力。通过体积法高压CO2吸附实验研究了3种吸附模型对不同变质程度煤样及活性炭吸附数据的表征效果。结果表明:压力在8 MPa附近时的CO2密度变化率最大,引入k值可有效提高拟合效果并“圈住”实验中的各种误差,铁法和卧龙湖煤样对CO2的吸附机理更大程度上是微孔填充;由于窑街煤样天然赋存于CO2气藏,受实验室超临界CO2作用改造效果微弱,其微孔较为发育,最大绝对吸附量高于其他煤样;气体密度逐渐增大时,过剩吸附量和绝对吸附量之间的差距越来越大,绝对吸附量决定了煤样的最大吸附能力;OK格子模型拟合出活性炭中CO2吸附相密度为1.004 g/cm3。Abstract: Adsorption characteristic of supercritical CO2 on coal directly determines the CO2 geological storage capacity. Through volumetric method, this paper analyzed the manifestation effects of different models on the experimental data of various ranked coals and activated carbon. The results indicate that the variation rate of gaseous CO2 density reaches the peak around 8 MPa. Introduction of parameter k could improve the fitting quality and trap various experimental errors. The adsorption mechanism of coal samples from Tiefa and Wolonghu is micropore filling. As coal samples of Yaojie is collected from a CO2 -rich reservoir, the alteration effect by experimental CO2 adsorption is unobvious and its micropores develop quite well, thus the greatest absolute adsorption is higher than other samples. When the gas density increases gradually, the gap between excess adsorption and absolute adsorption widens, and the absolute adsorption determines the adsorption capacity of the coal samples. The fitting CO2 adsorbed phase density of the activated carbon by OK model is 1.004 g/cm3.
-
-
[1] 刘廷, 马鑫, 刁玉杰, 等.国内外CO2地质封存潜力评价方法研究现状[J].中国地质调查, 2021, 8(4): 101-108. LIU Ting, MA Xin, DIAO Yujie, et al. Research status of CO2 geological storage potential evaluation methods at home and abroad[J]. Geological Survey of China, 2021, 8(4): 101-108.
[2] 孙腾民, 刘世奇, 汪涛.中国二氧化碳地质封存潜力评价研究进展[J].煤炭科学技术, 2021, 49(11): 10-20. SUN Tengmin, LIU Shiqi, WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11): 10-20.
[3] 王蒙, 郭晓阳, 邓存宝.煤孔隙发育特征对原位注CO2置驱CH4的影响[J].煤矿安全, 2022, 53(3): 1-8. WANG Meng, GUO Xiaoyang, DENG Cunbao. Influence of coal pore development characteristics on in-situ injecting CO2 to replace and drive CH4[J]. Safety in Coal Mines, 2022, 53(3): 1-8.
[4] 程远平, 胡彪.微孔填充-煤中甲烷的主要赋存形式[J]. 煤炭学报, 2021, 46(9): 2933-2948. CHENG Yuanping, HU Biao. Main occurrence form of methane in coal: Micropore filling[J]. Journal of China Coal Society, 2021, 46(9): 2933-2948.
[5] CHENG Yuanping, PAN Zhejun. Reservoir properties of Chinese tectonic coal: A review[J]. Fuel, 2020, 260: 116350. [6] 武剑, 李伟.超临界CO2-H2O流体对煤渗流孔隙结构的影响[J].煤矿安全, 2022, 53(3): 9-15. WU Jian, LI Wei. Influence of supercritical CO2-H2O fluid on seepage pore structure of coals[J]. Safety in Coal Mines, 2022, 53(3): 9-15
[7] 陈攀, 王泽祺.超临界CO2作用下煤体增透影响因素分析[J].煤矿安全, 2020, 51(9): 192-195. CHEN Pan, WANG Zeqi. Influencing factors analysis of coal permeability improvement under the action of supercritical CO2[J]. Safety in Coal Mines, 2020, 51(9): 192-195.
[8] HAN Sijie, SANG Shuxun, LIANG Jingjing, et al. Supercritical CO2 adsorption in a simulated deep coal reservoir environment, implications for geological storage of CO2 in deep coals in the southern Qinshui Basin, China[J]. Energy Science & Engineering, 2019, 7(2): 488-503. [9] 于洪观, 姜仁霞, 王盼盼, 等.基于不同状态方程压缩因子的煤吸附CO2等温线的比较[J].煤炭学报, 2013, 38(8): 1411-1417. YU Hongguan, JIANG Renxia, WANG Panpan, et al. Comparison of CO2 adsorption isotherms on coals based on compressibility factor from different equation of state[J]. Journal of China Coal Society, 2013, 38(8): 1411-1417.
[10] 李全中, 倪小明, 王延斌, 等.超临界状态下煤岩吸附/解吸二氧化碳的实验[J].煤田地质与勘探, 2014, 42(3): 36-39. LI Quanzhong, NI Xiaoming, WANG Yanbin, et al. The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition[J]. Coal Geology & Exploration, 2014, 42(3): 36-39.
[11] 李伟.CO2-ECBM中煤储层结构对CH4和CO2吸附/解吸影响的研究[D].太原: 太原理工大学, 2018. [12] 韩思杰, 桑树勋.煤岩超临界CO2吸附机理及表征模型研究进展[J].煤炭科学技术, 2020, 48(1): 227-238. HAN Sijie, SANG Shuxun. Mechanism and characterization model of supercritical CO2 adsorption on coals: a review[J]. Coal Science and Technology, 2020, 48(1): 227-238.
[13] 梁洪彬, 戚志林, 向祖平, 等.超临界页岩气密度特征研究[J].油气藏评价与开发, 2017, 7(5): 74-79. LIANG Hongbin, QI Zhilin, XIANG Zuping, et al. Research on the characteristics of the density of supercritical shale gas[J]. Reservoir Evaluation and Development, 2017, 7(5): 74-79.
[14] 熊健, 刘向君, 梁利喜, 等.页岩气超临界吸附的Dubibin-Astakhov改进模型[J].石油学报.2015, 36(7): 849-857. XIONG Jian, LIU Xiangjun, LIANG Lixi, et al. Improved Dubibin-Astakhov model for shale-gas supercritical adsorption[J]. Acta Petrolei Sinica, 2015, 36(7): 849-857.
[15] LI Jiawei, WANG Yuzhu, CHEN Zhixi, et al. Simulation of adsorption desorption behavior in coal seam gas reservoirs at the molecular level: A comprehensive review[J]. Energy & Fuels, 2020, 34(3): 2619-2642. [16] ANSARI Humera, JOSS Lisa, HWANG Junyoung, et al. Supercritical adsorption in micro- and meso-porous carbons and its utilisation for textural characterisation[J]. Microporous and Mesoporous Materials, 2020, 308: 110537. [17] 曲国娜, 马兆鑫, 贾廷贵, 等.高变质煤对CH4和CO2气体吸附试验与分子模拟研究[J].安全与环境学报, 2022, 22(1): 142-147. QU Guona, MA Zhaoxin, JIA Tinggui, et al. Experiment and molecular simulation study on the adsorption of CH4 and CO2 by coal with high-temperature[J]. Journal of Safety and Environment, 2022, 22(1): 142-147.
[18] 周尚文, 王红岩, 薛华庆, 等.页岩气超临界吸附机理及模型[J].科学通报, 2017, 62(35): 4189-4200. ZHOU Shangwen, WANG Hongyan, XUE Huaqing, et al. Supercritical methane adsorption on shale gas: mechanism and model[J]. Chinese Science Bulletin, 2017, 62(35): 4189-4200.
[19] 胡科, 汤积仁, MISCHO Helmut.基于Ono-Kondo格子模型的超临界页岩气吸附试验研究[J].煤炭学报, 2021, 46(8): 2479-2487. HU Ke, TANG Jiren, MISCHO Helmut. Investigation of supercritical shale gas adsorption in shale based on the Ono-Kondo lattice model[J]. Journal of China Coal Society, 2021, 46(8): 2479-2487.
[20] GOODMAN A L, BUSCH A, BUSTIN R M, et al. Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 °C and up to 15 MPa[J]. International Journal of Coal Geology, 2007, 72(3): 153-164. [21] GOODMAN A L, BUSCH A, DUFFY G J, et al. An Inter-laboratory comparison of CO2 isotherms measured on Argonne Premium coal samples[J]. Energy & Fuels, 2004, 18(4): 1175-1182. [22] SAKUROVS Richard, DAY Stuart, WEIR Steve. Causes and consequences of errors in determining sorption capacity of coals for carbon dioxide at high pressure[J]. International Journal of Coal Geology, 2009, 77(1): 16-22. [23] 刘操, 张玉贵, 贾天让, 等.气源岩吸附试验的机理及吸附特征新认识[J].煤炭学报, 2019, 44(11): 3441-3452. LIU Cao, ZHANG Yugui, JIA Tianrang, et al. New interpretation of adsorption test mechanism and adsorption law for gas source rock[J]. Journal of China Coal Society, 2019, 44(11): 3441-3452.
[24] 汤积仁, 张靖, 卢义玉, 等.页岩对CO2的绝对吸附量及其影响因素试验研究[J].煤炭学报, 2020, 45(8): 2838-2845. TANG Jiren, ZHANG Jing, LU Yuyi, et al. Study on the absolute adsorption capacity of shale on CO2 and its influencing factors[J]. Journal of China Coal Society, 2020, 45(8): 2838-2845.
[25] ZHOU Junping, LIU Muhan, XIAN Xuefu, et al. Measurements and modelling of CH4 and CO2 adsorption behaviors on shales: Implication for CO2 enhanced shale gas recovery[J]. Fuel, 2019, 251: 293-306. [26] FITZGERALD J E, PAN Z, SUDIBANDRIYO M, et al. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal[J]. Fuel, 2005, 84(18): 2351-2363. [27] DREISBACH F, STAUDT R, KELLER J U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon[J]. Adsorption, 1999, 5(3): 215-227. [28] DAY Stuart, FRY Robyn, SAKUROVS Richard. Swelling of Australian coals in supercritical CO2[J]. International Journal of Coal Geology, 2008, 74(1): 41-52.
计量
- 文章访问数: 74
- HTML全文浏览量: 19
- PDF下载量: 44