煤孔隙发育特征对原位注CO2置驱CH4的影响
Influence of coal pore development characteristics on in-situ injecting CO2 to replace and drive CH4
-
摘要: 注CO2增产煤层气的机理有置换、载携和稀释扩散等,均与煤孔隙息息相关。为厘清煤孔隙对原位注CO2置驱CH4的影响,分析了3个原煤煤样的孔隙特征,采用自行研制的受载煤体注气置驱甲烷实验台,研究不同条件下原煤渗透性和吸附性,开展原位注CO2置驱CH4分步实验,深入探讨置驱的全过程。实验结果表明:YCW褐煤、SL肥煤和YMY无烟煤吸附孔占比依次为28.71%、88.24%和89.24%,渗流孔发育程度依次降低;随煤变质程度升高,煤吸附性变大、渗透性变小;置驱过程分为3个时期,早期阶段注入CO2主要起置换作用,中期阶段注入CO2起置换、载携和稀释作用,后期阶段注入CO2起载携、稀释作用;吸附孔和渗流孔均发育的YCW褐煤,提高注气压力或降低外部载荷能有效促进置换、载携、稀释作用,对整个置驱过程改善大,但对仅吸附孔发育的SL肥煤和YMY无烟煤的置驱过程改善小,如注气压力1 MPa、外部载荷6 MPa下,YCW褐煤、SL肥煤、YMY无烟煤的置驱效率依次为62.4%、48.4%和62.3%,当注气压力为2 MPa、外部载荷为4 MPa时,3个煤样的置驱效率依次为94.4%、72.2%和71.0%。Abstract: The mechanism of injecting CO2 to increase the production of CBM includes replacement, carrying, dilution and diffusion, etc, which are closely related to coal pores. In order to clarify the influence of coal pores on in-situ injecting CO2 to replace and drive CH4, the pore structure characteristics of three raw coal samples were analyzed, and then a self-made experiment platform was used to realize the injected gas replacement and driving CH4 in loaded coal. It is used to study the permeability and adsorption of raw coal under different conditions, and a step-by-step experiment of in-situ injecting CO2 to replace and drive CH4 is carried out, and the whole process of replacement and driving is deeply discussed. The experimental results show that the proportions of adsorption pores of YCW lignite, SL fat coal and YMY anthracite are 28.71%, 88.24%, and 89.24%, the development degree of seepage pores decreases sequentially. As the degree of coal metamorphism increases, the adsorption capacity of coal becomes larger and the permeability becomes smaller. The process of replacement and driving can be divided into three stages. In the early stage, injecting CO2 mainly plays the role of replacement. In the middle stage, injecting CO2 plays the role of replacement, carrying and dilution. In the later stage, injecting CO2 plays the role of carrying and dilution. For YCW lignite with adsorption pore and seepage pore, increasing gas injection pressure or reducing external load can effectively promote replacement, carrying and dilution, greatly improving the whole replacement and driving process, but little improving for SL fat coal and YMY anthracite with only adsorption pore. For example, when the gas injection pressure is 1 MPa and the external load is 6 MPa, the replacement and driving efficiency of YCW lignite, SL fat coal, and YMY anthracite is 62.4%, 48.4%, and 62.3%. When the gas injection pressure is 2 MPa and the external load is 4 MPa, the replacement and drive efficiency of three coal samples is 94.4%, 72.2%, and 71.0%, respectively.
-
Keywords:
- in-situ state /
- coal pores /
- adsorption /
- permeability /
- replacement and driving CH4 /
- injecting CO2
-
-
[1] 吴建光,叶建平,唐书恒.注入CO2提高煤层气产能的可行性研究[J].高校地质学报,2004,10(3):463-467. WU Jianguang, YE Jianping, TANG Shuheng. A feasibility study on CO2 injection for enhancing the coalbed methane recovery[J]. Geological Journal of China Universities, 2004, 10(3): 463-467.
[2] 唐书恒,马彩霞,叶建平,等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006, 35(5):607. TANG Shuheng, MA Caixia, YE Jianping, et al. A modeling experiment of enhancing coalbed methane recovery by carbon dioxide injection[J]. Journal of China University of Mining & Technology, 2006, 35(5): 607.
[3] 叶建平,冯三利,范志强,等.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报,2007,28(4):77-80. YE Jianping, FENG Sanli, FAN Zhiqiang, et al. Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 77-80.
[4] 叶建平,张兵,Sam Wong.山西沁水盆地柿庄北区块3#煤层注入埋藏CO2提高煤层气采收率试验和评价[J].中国工程科学,2012,14(2):38-44. YE Jianping, ZHANG Bing, Sam Wong. Test of and evaluation on elevation of coalbed methane recovery ratio by injecting and burying CO2 for 3# coal seam of north section of Shizhuang, Qingshui Basin, Shanxi[J]. Engineering Sciences, 2012, 14(2): 38-44.
[5] 申建,秦勇,张春杰,等.沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J].煤炭学报,2016,41(1):156-161. SHEN Jian, QIN Yong, ZHANG Chunjie, et al. Feasibility of enhanced coalbed methane recovery by CO2 sequestration into deep coalbed of Qinshui Basin[J]. Journal of China Coal Society, 2016, 41(1): 156-161.
[6] 周西华,姜鹏飞,白刚,等.CO2驱替CH4置换效率测试与分析[J].中国安全科学学报,2020,30(2):8-13. ZHOU Xihua, JIANG Pengfei, BAI Gang, et al. Test and analysis of displacement efficiency of CO2 replacing CH4[J]. China Safety Science Journal, 2020, 30(2): 8-13.
[7] 杨宏民,许冬亮,陈立伟.注CO2置换/驱替煤中甲烷定量化研究[J].中国安全生产科学技术,2016,12(5): 38-42. YANG Hongmin, XU Dongliang, CHEN Liwei. Quantitative study on displacement-replacement of methane in coal through CO2 injection[J]. Journal of Safety Science and Technology, 2016, 12(5): 38-42.
[8] 杨天鸿,陈立伟,杨宏民,等.注二氧化碳促排煤层瓦斯机制转化过程实验研究[J].东北大学学报,2020, 41(5):623. YANG Tianhong, CHEN Liwei, YANG Hongmin, et al. Experimental study on the conversion process of promoting gas drainage mechanism by CO2 injection[J]. Journal of Northeastern University, 2020, 41(5): 623.
[9] 夏德宏,张世强.注CO2开采煤层气的增产机理及效果研究[J].江西能源,2008(1):7-10. XIA Dehong, ZHANG Shiqiang. Mechanism and effect of increasing yeild of coalbed methane extraction by CO2 injection[J]. Jiangxi Energy, 2008(1): 7-10.
[10] 王晓锋,朱卫平.注CO2提高煤层气采收率技术研究现状[J].资源与产业,2010,12(6):125-129. WANG Xiaofeng, ZHU Weiping. Reviews on CO2 injection to increase coalbed methane recovery[J]. Resources & Industries, 2010, 12(6): 125-129.
[11] 马砺,邢园园,魏高明.注二氧化碳驱替煤中甲烷实验研究[J].煤矿安全,2018,49(12):5-8. MA Li, XING Yuanyuan, WEI Gaoming. Experimental study of coalbed methane replacement by injecting carbon dioxide[J]. Safety in Coal Mines, 2018, 49(12): 5-8.
[12] 姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006, 31(2):163-168. YAO Yanbin, LIU Dameng, HUANG Wenhui, et al. Research on the pore-fractures system properties of coalbed methane reservoirs and recovery in Huainan and Huaibei coal-fields[J]. Journal of China Coal Society, 2006, 31(2): 163-168.
[13] 杨明,柳磊,张学博,等.不同阶煤孔隙结构与流体特性的核磁共振试验研究[J].中国安全科学学报,2021,31(1):81-88. YANG Ming, LIU Lei, ZHANG Xuebo, et al. Nuclear magnetic resonance experimental study on pore structure and fluid characteristics of coal at different ranks[J]. China Safety Science Journal, 2021, 31(1): 81.
[14] Guo X Y, Deng C B, Fan Y P, et al. Experimental research on leaf vein geometric characteristics of multibranch horizontal well for coalbed methane recovery[J]. Energy Science & Engineering, 2019, 7(6): 2921. [15] Fan N, Wang J R, Deng C B, et al. Quantitative characterization of coal microstructure and visualization seepage of macropores using CT-based 3D reconstruction[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 12. [16] 张召召,潘结南,李猛,等.基于压汞和低温氮吸附联合试验的不同变质程度煤全孔隙结构特征研究[J].煤矿安全,2018,49(4):25-29. ZHANG Zhaozhao, PAN Jienan, LI Meng, et al. Total pore structure characteristics of coal with different metamorphic degree based on joint experiment of mercury intrusion and low temperature nitrogen adsorption[J]. Safety in Coal Mines, 2018, 49(4): 25-29.
-
期刊类型引用(3)
1. 雷红艳. 煤吸附CO_2压缩因子快速计算模型研究. 煤矿安全. 2024(06): 40-48 . 本站查看
2. 许将,陈倩,李居云. CH_4/H_2O/CO_2在煤大分子中自扩散的分子模拟. 煤矿安全. 2024(09): 85-93 . 本站查看
3. 李延河,李喜员,孙矩正,仝艳军,薛俊华,杨泉林,陈志恒. 煤对超临界CO_2的吸附实验及不同表征模型对比. 煤矿安全. 2023(06): 18-26 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 133
- HTML全文浏览量: 0
- PDF下载量: 124
- 被引次数: 4