• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

韩城北部煤层气储层物性特征及其主控因素研究

葛毓, 麻银娟, 魏晓, 陈兴隆

葛毓, 麻银娟, 魏晓, 陈兴隆. 韩城北部煤层气储层物性特征及其主控因素研究[J]. 煤矿安全, 2021, 52(10): 157-165.
引用本文: 葛毓, 麻银娟, 魏晓, 陈兴隆. 韩城北部煤层气储层物性特征及其主控因素研究[J]. 煤矿安全, 2021, 52(10): 157-165.
GE Yu, MA Yinjuan, WEI Xiao, CHEN Xinglong. Study on physical property characteristics and main controlling factors of coalbed methane reservoir in northern Hancheng Mine Area[J]. Safety in Coal Mines, 2021, 52(10): 157-165.
Citation: GE Yu, MA Yinjuan, WEI Xiao, CHEN Xinglong. Study on physical property characteristics and main controlling factors of coalbed methane reservoir in northern Hancheng Mine Area[J]. Safety in Coal Mines, 2021, 52(10): 157-165.

韩城北部煤层气储层物性特征及其主控因素研究

Study on physical property characteristics and main controlling factors of coalbed methane reservoir in northern Hancheng Mine Area

  • 摘要: 在全面收集研究区煤层及煤层气地质勘查资料及实验测试成果的基础上,采用定量化分析方法,系统分析煤层吸附能力、含气性、地应力、孔渗性等的变化规律,重点探讨影响该区煤层气赋存的主控因素及开发地质条件。研究表明:该区煤层含气量总体受埋深控制,西高东低;纵向上,随埋深增大,煤的变质程度增高;埋深小于1 000 m,压力的正效应起主导作用,含气量、含气饱和度、渗透率随埋深的增大而增高,孔隙度随埋深的增大而降低;埋深超过1 000 m,温度的负效应起主导作用,含气量、含气饱和度随埋深的增大而降低,孔隙度逐渐反弹,渗透率逐渐降低;二者过渡埋深范围为750~1 000 m;埋深小于750 m,以水平应力为主,为压缩型地应力场;埋深介于750~1 000 m之间,部分转换为以垂直应力为主,表现出拉张型地应力场,有利于裂隙发育,渗透性变好,渗透率随埋深增大而增高;埋深大于1 000 m,重新转换为压缩型地应力场,渗透率随埋深增加而大幅降低。
    Abstract: Based on the comprehensive collection of geological exploration data and experimental test results of coal seam and coalbed methane in the study area, we adopt quantitative analysis method to systematically analyze the change law of adsorption capacity, gas content, in-situ stress, porosity and permeability of coal seam, and emphatically discuss the main controlling factors and development geological conditions affecting the occurrence of coalbed methane in the area. The study shows that the gas content of coal seam in this area is generally controlled by the burial depth, which is high in the west and low in the east. Longitudinally, the metamorphic degree of coal increases with the increase of buried depth. When the burial depth is less than 1 000 m, the positive effect of pressure plays a dominant role. The gas content, gas saturation and permeability increase with the burial depth increasing, while the porosity decreases with the burial depth increasing. When the burial depth is more than 1 000 m, the negative effect of temperature plays a dominant role. The gas content and gas saturation decrease with the increase of the burial depth, the porosity gradually rebounds, and the permeability gradually decreases. The transitional burial depth of both is from 750 m to 1 000 m. The buried depth is less than 750 m, the horizontal stress is the main stress field, and it is a compressive in-situ stress field. The buried depth is between 750 and 1 000 m, and the vertical stress is predominant in part, showing tensile in-situ stress field, which is conducive to the development of fracture, and the permeability is better, and the permeability increases with the increase of the buried depth. When the buried depth is greater than 1 000 m, it is transformed into compressive in-situ stress field again, and the permeability decreases greatly with the increase of buried depth.
  • [1] 姚艳斌,王辉,杨延辉,等.煤层气储层可改造性评价-以郑庄区块为例[J].煤田地质与勘探,2021,49(1):119-129.

    YAO Yanbin, WANG Hui, YANG Yanhui, et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir: a case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration, 2021, 49(1): 119.

    [2] 王超平.渭北煤田地质构造发育规律研究[D].西安:西安科技大学,2014.
    [3] 李建东.鄂尔多斯盆地东南部上古生界煤层气成藏条件分析[D].西安:西安石油大学,2013.
    [4] 熊先钺.韩城区块煤层气连续排采主控因素及控制措施研究[D].北京:中国矿业大学(北京),2014.
    [5] 邱勇凯.渭北地区煤层气储层物性特征及控制机理[D].北京:中国地质大学(北京),2015.
    [6] 王战锋.陕西桑树坪煤矿煤与瓦斯突出预测研究[D].西安:西安科技大学,2006.
    [7] 霍凯中.鄂尔多斯盆地东部煤层气资源预测模型研究[D].青岛:中国石油大学,2007.
    [8] 涂志民.韩城矿区北区块煤层气赋存特征研究[J].煤炭技术,2017,36(4):116-118.

    TU Zhimin. Study on occurrence fertures of coalbed methane in north block of Hancheng Mining Area[J]. Coal Technology,2017, 36(4): 116-118.

    [9] 陈振宏,王勃,宋岩.韩城地区煤层气成藏条件评价[J].天然气地球科学,2006,17(6):868-870.

    CHEN Zhenhong, WANG Bo, SONG Yan. Evaluation of the conditions of CBM reservoir in Hancheng Area[J]. Natural Gas Geoscience, 2006, 17(6): 868-870.

    [10] 张明山.韩城WL1井组煤层气地质特征[J].中国煤炭地质,2009,21(10):31-33.

    ZHANG Mingshan. CBM geological characteristics inthe Hancheng WL1 well group[J]. Coal Geology of China, 2009, 21(10): 31-33.

    [11] 伊伟,熊先钺,卓莹,等.韩城矿区煤储层特征及煤层气资源潜力[J].中国石油勘探,2017,22(6):78-86.

    YI Wei, XIONG Xianyue, ZHUO Ying, et al. Coal reservoir and CBM potentials in Hancheng Mining Area[J]. China Petroleum Exploration, 2017, 22(6): 78-86.

    [12] 李松,汤达祯,许浩,等.深部煤层气储层地质研究进展[J].地学前缘,2016,23(3):10-16.

    LI Song, TANG Dazhen, XU Hao, et al. Progress in geological on deep coalbed methane reservoirs[J]. Earth Science Frontier, 2016, 23(3): 10-16.

    [13] 朱庆忠,杨延辉,左银卿,等.对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55.

    ZHU Qingzhong, YANG Yanhui, ZUO Yinqing, et al. On the scientific exploitation of high-rank CBM res-ources[J]. Natural Gas Industry, 2020, 40(1): 55.

    [14] 连承波,李汉林.地应力对煤储层渗透性影响的机理研究[J].煤田地质与勘探,2005,33(2):30-32.

    LIAN Chengbo, LI Hanlin. Mechanism research about effect of in-situ stress on coalbed permeability[J]. Coal Geology & Exploration, 2005, 33(2): 30-32.

    [15] 叶建平,张守仁,凌标灿,等.煤层气物性参数随埋深变化规律研究[J].煤炭科学技术,2014,42(6):35.

    YE Jianping, ZHANG Shouren, LING Biaocan, et al. Study on variation law of coalbed methane physical property parameters with seam depth[J]. Coal Science and Technology, 2014, 42(6): 35.

    [16] 徐宏杰,桑树勋,易同生,等.黔西地区煤层埋深与地应力对其渗透性控制机制[J].地球科学,2014,39(11):1607-1616.

    XU Hongjie, SANG Shuxun, Yi Tongsheng, et al. Control mechanism of buried depth and in-situ stress for coal reservoir permeability in Western Guizhou[J]. Journal of Earth Science, 2014, 39(11): 1607-1616.

    [17] 任鹏飞,汤达祯,许浩,等.柳林地区煤储层埋深和地应力对其渗透率的控制机理[J].科技通报,2016,32(7):25-29.

    REN Pengfei, TANG Dazhen, XU Hao, et al. Control mechanism of buried depth and in-situ stress for coal reservoir permeability in Liulin Area[J]. Bulletin of Science and Technology, 2016, 32(7): 25-29.

    [18] 伊伟,涂志民,冯延青,等.韩城矿区煤层含气性分布规律及地质控制因素研究[J].煤炭科学技术,2017, 45(7):156-160.

    YI Wei, TU Zhimin, FENG Yanqing, et al. Study on distribution laws of gas-bearing property of coal seams and geological control factors in Hancheng Mining Area[J]. Coal Science and Technology, 2017, 45(7): 156-160.

    [19] 王延斌,陶传奇,倪小明,等.基于吸附势理论的深部煤储层吸附气量研究[J].煤炭学报,2018,43(6):1547-1552.

    WANG Yanbin, TAO Chuanqi, NI Xiaoming, et al. Amount of adsorbed gas in deep coal reservoirs based on adsorption potential theory[J]. Journal of China Coal Society, 2018, 43(6): 1547-1552.

    [20] 康红普,王金华,高富强.掘进工作面围岩应力分布特征及其与支护的关系[J].煤炭学报,2009,34(12):1585-1593.

    KANG Hongpu, WANG Jinhua, GAO Fuqiang. Stress distribution characteristics in rock surrounding heading face and its relationship with supporting[J]. Journal of China Coal Society, 2009, 34(12): 1585-1593.

  • 期刊类型引用(6)

    1. 李鹏,李小军,涂志民,车延前,常新龙,李腾. 新疆后峡盆地煤层气井产量影响因素分析. 煤矿安全. 2024(04): 1-10 . 本站查看
    2. 王单华. 煤层气选区评价中的含气性指标应用探讨. 中国煤炭地质. 2024(06): 33-38 . 百度学术
    3. 杨嘉慧,赵军龙,杨文豪,毛樊晶. 沁水盆地南部Y区煤层气储层物性参数计算方法研究. 采矿技术. 2023(02): 169-174 . 百度学术
    4. 王之朕,张松航,唐书恒,王凯峰,张迁,林文姬. 煤层气开发井网密度和井距优化研究-以韩城北区块为例. 煤炭科学技术. 2023(03): 148-157 . 百度学术
    5. 赵海峰,杨昌增,冯堃,甄怀宾. 韩城区块西北部三维地应力场反演分析. 煤矿安全. 2023(10): 16-23 . 本站查看
    6. 傅雪海,齐琦,程鸣,张宝鑫. 煤储层渗透率测试、模拟与预测研究进展. 煤炭学报. 2022(06): 2369-2385 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  34
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 9
出版历程
  • 发布日期:  2021-10-19

目录

    /

    返回文章
    返回