Inversion analysis of three-dimensional geostress field in northwest Hancheng Block
-
摘要:
为改善当前地应力场研究对经验公式的依赖现状,以韩城区块地质条件为背景,提出了通过有限元反演回归计算地应力的方法,根据韩城区块的地质概况建立起较为精确的三维地质模型,以现场水压致裂法所测得的地应力实测资料为基础,采用三维有限元回归分析法拟合实测数据,得到研究区的地应力场分布规律。研究结果表明:煤层三向应力从大到小依次为垂向应力、水平最大主应力、水平最小主应力;煤层的整体应力差处于2~4 MPa之间,在北西部存在较大应力差;煤层整体的应力方向趋势呈北偏东45°;误差大小不超过20%,能够满足工程实际的要求。
Abstract:In order to improve the current situation of relying on empirical formulas in the current research on goestress fields, a finite element inversion and regression calculation method of goestresss is proposed based on the geological conditions of Hancheng Block. First, a more accurate three-dimensional geological model is established according to the geological situation of Hancheng Block; the three-dimensional finite element regression analysis method is used to fit the measured data, and finally the distribution law of the goestress field in the study area is obtained. The research results show that the three-dimensional goestress of the coal seam is in descending order: vertical stress, horizontal maximum principal stress, and horizontal minimum principal stress; the overall stress difference of the coal seam is between 2 MPa and 4 MPa, and there is a larger stress in the northwest; the overall stress direction trend of the coal seam is 45 degrees north to east; the error size does not exceed 20%, which meets the actual requirements of the project.
-
-
表 1 钻孔水压致裂法地应力测量结果
Table 1 Measurement results of in-situ stress by drilling hydraulic fracturing method
测点 测深/m 应力/MPa 破裂方位/(°) 最大主应力 最小主应力 垂向应力 1 754 17.65 11.40 18.10 2 918 18.09 13.10 22.03 3 804 18.46 16.50 19.30 4 836 19.74 17.00 20.06 N42°E 5 798 21.19 11.90 19.15 6 1002 23.02 12.50 24.05 N43°E 表 2 坐标系下实测地应力分量值
Table 2 Measured geostress component values in the coordinate system
MPa $ {\sigma }_{1} $ $ {\sigma }_{2} $ $ {\sigma }_{3} $ $ {\sigma }_{x} $ $ {\sigma }_{y} $ $ {\sigma }_{z} $ $ {\tau }_{yz} $ $ {\tau }_{xz} $ $ {\tau }_{xy} $ 18.10 17.65 11.40 20.54 4.42 18.10 0.00 0.00 −3.13 19.15 18.09 11.90 21.20 4.38 19.15 0.00 0.00 −3.10 19.30 18.46 12.50 23.39 4.21 19.30 0.00 0.00 −2.98 20.06 19.74 12.70 23.86 4.98 20.06 0.00 0.00 −3.52 22.03 21.19 13.20 24.31 5.65 22.03 0.00 0.00 −4.00 24.05 23.02 14.10 26.24 6.31 24.05 0.00 0.00 −4.46 表 3 实测数据与回归计算值对比
Table 3 Comparison of measured data and regression calculated values
测点编号 测深/m 最大水平主应力/MPa 最小水平主应力/MPa 垂向应力/MPa 实测值 计算值 误差 实测值 计算值 误差 实测值 计算值 误差 1 752 17.7 20.3 2.7 11.4 13.3 1.9 18.1 18.6 0.5 2 916 21.1 25.8 4.7 13.1 15.3 2.2 22.0 23.5 1.4 3 803 27.5 30.4 2.9 16.5 20.1 3.6 19.3 20.1 0.8 4 835 27.6 29.4 1.8 17.0 21.6 4.6 20.1 21.0 1.0 5 796 18.1 20.3 2.2 11.9 13.4 1.5 19.2 20.6 1.4 6 1000 23.5 25.7 2.2 12.5 14.3 1.8 24.0 25.0 0.9 -
[1] 宋岩,张新民,柳少波. 中国煤层气基础研究和勘探开发技术新进展[J]. 天然气工业,2005(1):1−7. doi: 10.3321/j.issn:1000-0976.2005.01.002 SONG Yan, ZHANG Xinmin, LIU Shaobo. Progress in the basic studies and exploration & development techniques of coalbed methane in China[J]. Natural Gas Industry, 2005(1): 1−7. doi: 10.3321/j.issn:1000-0976.2005.01.002
[2] 邵龙义,侯海海,唐跃,等. 中国煤层气勘探开发战略接替区优选[J]. 天然气工业,2015,35(3):1−11. doi: 10.3787/j.issn.1000-0976.2015.03.001 SHAO Longyi, HOU Haihai, TANG Yue, et al. Selection of strategic relay areas of CBM exploration and development in China[J]. Natural Gas Industry, 2015, 35(3): 1−11. doi: 10.3787/j.issn.1000-0976.2015.03.001
[3] 孙茂远,刘贻军. 中国煤层气产业新进展[J]. 天然气工业,2008(3):5−9. doi: 10.3787/j.issn.1000-0976.2008.03.002 SUN Maoyuan, LIU Yijun. New progress in coalbed methane industry of China[J]. Natural Gas Industry, 2008(3): 5−9. doi: 10.3787/j.issn.1000-0976.2008.03.002
[4] 葛毓,麻银娟,魏晓,等. 韩城北部煤层气储层物性特征及其主控因素研究[J]. 煤矿安全,2021,52(10):157−165. GE Yu, MA Yinjuan, WEI Xiao, et al. Study on physical property characteristics and main controling factors of coalbed methane reservoir in northern Hancheng Mine Area[J]. Safety in Coal Mine, 2021, 52(10): 157−165.
[5] 孟召平,蓝强,刘翠丽,等. 鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系[J]. 煤炭学报,2013,38(1):122−128. MENG Zhaoping, LAN Qiang, LIU Cuili, et al. In-situ stress and coal reservoir pressure in southeast margin of Ordos Basin and their coupling relations[J]. Journal of China Coal Society, 2013, 38(1): 122−128.
[6] LI Y, TANG D Z, XU H, et al. In-situ Stress Distribution and Its Implication on Coalbed Methane Development in Liulin Area, Eastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2014, 122: 488−496. doi: 10.1016/j.petrol.2014.08.010
[7] ZHAO J L, TANG D Z, XU H, et al. Characteristic of Insitu Stress and Its Control on the Coalbed Methane Reservoir Permeability in the Eastern Margin of the Ordos Basin, China[J]. Rock Mechanics and Rock Engineering, 2016, 49: 3307−3322. doi: 10.1007/s00603-016-0969-1
[8] 李松,汤达祯,许浩,等. 应力条件制约下不同埋深煤储层物性差异演化[J]. 石油学报,2015,36(S1):68−75. doi: 10.7623/syxb2015S1008 LI Song, TANG Dazhen, XU Hao, et al. Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J]. Acta Petrolei Sinica, 2015, 36(S1): 68−75. doi: 10.7623/syxb2015S1008
[9] 叶建平,史保生,张春才. 中国煤储层渗透性及其主要影响因素[J]. 煤炭学报,1999(2):8−12. doi: 10.13225/j.cnki.jccs.1999.02.002 YE Jianping, SHI Baosheng, ZHANG Chuncai. Coal reservoir permeability and its controlled factors in China[J]. Journal of China Coal Society, 1999(2): 8−12. doi: 10.13225/j.cnki.jccs.1999.02.002
[10] 许耀波. 应力干扰下煤层顶板水平井穿层分段压裂规律[J]. 煤田地质与勘探,2020,48(4):11−18. doi: 10.3969/j.issn.1001-1986.2020.04.002 XU Yaobo. Layer-penetrating staged fracturing layer-penetrating staged fracturing law of horizontal wells within roof of coal seams under stress interference[J]. Coal Geology and Exploration, 2020, 48(4): 11−18. doi: 10.3969/j.issn.1001-1986.2020.04.002
[11] 颜天佑,崔臻,张勇慧,等. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. 岩土力学,2018,39(S1):378−386. doi: 10.16285/j.rsm.2017.2390 YAN Tianyou, CUI Zhen, ZHANG Yonghui, et al. Study of distribution characteristics of in-situ stress field in occurrence area of crossing active fault tunnel engineering[J]. Rock and Soil Mechanics, 2018, 39(S1): 378−386. doi: 10.16285/j.rsm.2017.2390
[12] 赵辰,肖明,陈俊涛. 复杂地质条件下初始地应力场反演分析方法[J]. 华中科技大学学报(自然科学版),2017,45(8):87−92. ZHAO Chen, XIAO Ming, CHEN Juntao. Inversion analysis method for in-situ stress field under complex geological conditions[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(8): 87−92.
[13] 肖明,刘志明. 锦屏二级水电站三维地应力场反演回归分析[J]. 人民长江,2000(9):42−44. doi: 10.3969/j.issn.1001-4179.2000.09.016 XIAO Ming, LIU Zhiming. Inversion regression analysis of 3-dimensional ground stress field for Jinping No.2 hydropower station[J]. Yangtze River, 2000(9): 42−44. doi: 10.3969/j.issn.1001-4179.2000.09.016
[14] 张和伟,申建,李可心,等. 鄂尔多斯盆地临兴西区深煤层地应力场特征及应力变化分析[J]. 地质与勘探,2020,56(4):809−818. doi: 10.12134/j.dzykt.2020.04.014 ZHANG Hewei, SHEN Jian, LI Kexin, et al. Characteristics of the in-situ stress field and stress change of deep coal seams in the western Linxing Area, Ordos Basin[J]. Geology and Exploration, 2020, 56(4): 809−818. doi: 10.12134/j.dzykt.2020.04.014
[15] 尹健民,李永松,陈建平,等. 基于多源信息集成的地应力场分析研究[J]. 岩石力学与工程学报,2012,31(S2):3950−3958. YIN Jianmin, LI Yongsong, CHEN Jianping, et al. In-situ stress field analysis based on multi-source information integration[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3950−3958.
[16] 王庆武,巨能攀,杜玲丽,等. 拉林铁路桑日至加查段三维地应力场反演分析[J]. 岩土力学,2018,39(4):1450−1462. WANG Qingwu, JU Nengpan, DU Lingli, et al. Three dimensional inverse analysis of geostress field in the Sangri-Jiacha section of Lasa-Linzhi Railway[J]. Rock and Soil Mechanics, 2018, 39(4): 1450−1462.
[17] 易达,陈胜宏,葛修润. 岩体初始应力场的遗传算法与有限元联合反演法[J]. 岩土力学,2004(7):1077−1080. doi: 10.3969/j.issn.1000-7598.2004.07.015 YI Da, CHEN Shenghong, GE Xiurun. A methodology combining genetic algorithm and finite element method for back analysis of initial stress field of rock masses[J]. Rock and Soil Mechanics, 2004(7): 1077−1080. doi: 10.3969/j.issn.1000-7598.2004.07.015
[18] 戚蓝,崔溦,熊开智,等. 灰色理论在地应力场分析中的应用[J]. 岩石力学与工程学报,2002(10):1547−1550. doi: 10.3321/j.issn:1000-6915.2002.10.023 QI Lan, CUI Chu, XIONG Kaizhi, et al. Application of grey theory to analysis of in-situ stress field[J]. Chinese Journal of Rock Mechanics and Engineering, 2002(10): 1547−1550. doi: 10.3321/j.issn:1000-6915.2002.10.023
[19] 李欣,谢学斌,杨承祥,等. 基于改进粒子群优化算法的地应力场反演[J]. 矿冶工程,2015,35(1):23−26. doi: 10.3969/j.issn.0253-6099.2015.01.007 LI Xin, XIE Xuebin, YANG Chengxiang, et al. Inversion analysis of initial stress field based on modified particle swarm optimization[J]. Mining and Metallurgical Engineering, 2015, 35(1): 23−26. doi: 10.3969/j.issn.0253-6099.2015.01.007
[20] 王开洋,肖鸿,尚彦军,等. 西南地区某隧道围岩岩爆预测研究[J]. 工程地质学报,2014,22(5):903−914. WANG Kaiyang, XIAO Hong, SHANG Yanjun, et al. Prediction of rockburst at wall rocks of tunnels in southwest[J]. Engineering Geology, 2014, 22(5): 903−914.
[21] 汪波,何川,吴德兴,等. 苍岭特长公路隧道地应力场反演分析[J]. 岩土力学,2012,33(2):628−634. doi: 10.3969/j.issn.1000-7598.2012.02.048 WANG Bo, HE Chuan, WU Dexing, et al. Inverse analysis of in-situ stress field of Cangling super-long highway tunnel[J]. Rock and Soil Mechanics, 2012, 33(2): 628−634. doi: 10.3969/j.issn.1000-7598.2012.02.048
[22] GUO Z, JIANG Y, PANG J, et al. Distribution of ground stress on Puhe coal mine[J]. International Journal of Mining Science and Technology, 2013, 23(1): 139−143. doi: 10.1016/j.ijmst.2013.03.004
[23] ODA M, YAMABE T, ISHIZUKA Y, et al. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mechanics and Rock Engineering, 1993, 26: 89−112. doi: 10.1007/BF01023618
[24] MEDLIN W L, MASSE L. Laboratory Investigation of Fracture Initiation Pressure and Orientation[J]. Society of Petroleum Engineers Journal, 1979, 19(2): 129−144. doi: 10.2118/6087-PA
[25] 王凯. 主应力方向余弦的计算公式[J]. 力学与实践,2015,37(3):378−380. WANG Kai. The calculation formula of direction cosine for principal stresses[J]. Mechanics in Engineering, 2015, 37(3): 378−380.
[26] 刘宇博. 双江口水电站坝址区初始地应力场反演分析[D]. 北京: 中国地质大学(北京), 2020. [27] 王知深,李勇,朱维申,等. 多元线性回归算法在地应力场计算中的应用[J]. 山西建筑,2019,45(2):51−53. doi: 10.3969/j.issn.1009-6825.2019.02.028 WANG Zhishen, LI Yong, ZHU Weishen, et al. Application of multiple linear regression algorithm in the calculation of ground stress field[J]. Shanxi Architecture, 2019, 45(2): 51−53. doi: 10.3969/j.issn.1009-6825.2019.02.028
-
期刊类型引用(1)
1. 孔令帅,栗继祖. 安全基地型领导对新生代矿工安全参与行为的影响研究. 煤炭经济研究. 2025(02): 170-176 . 百度学术
其他类型引用(0)