Effects of igneous rock erosion on spontaneous combustion properties and structure of coal
-
摘要:
为探究火成岩侵蚀对煤自燃特性及结构的影响规律,以陕西、辽宁区域两煤矿同工作面原生煤及火成岩侵蚀煤为研究对象,采用程序升温试验、红外光谱分析、低温氮气吸附和压汞实验,分别从宏观和微观角度对煤的氧化特性、自燃极限参数、活性官能团含量以及孔隙结构特征进行分析。结果表明:火成岩侵蚀增大煤的自燃风险,会提升煤体内部的气体流通性,火成岩侵蚀煤体具有更高的氧化活性;此外,火成岩侵蚀改变煤层赋存条件,增大煤层开采难度,提高采空区内漏风强度,延长采空区“氧化升温带”遗煤的氧化时间,从外部影响因素层面提升煤炭的自燃风险;火成岩侵蚀改变煤自身结构和煤自燃外部环境因素,加剧了侵蚀煤层的自燃风险。
Abstract:In order to explore the influence law of igneous rock erosion on coal spontaneous combustion characteristics and structure, taking primary coal and igneous rock eroded coal in the same coal face of Shanxi Mine and Liaoning Mine as the samples, the oxidation characteristics, the limit parameters of the spontaneous combustion, the content of the active functional group and pore structure characteristics of coal were analyzed from macro and micro perspectives by temperature programmed test, FT-IR experiment, low temperature nitrogen adsorption experiment and mercury injection experiment respectively. The results of temperature programmed test showed that igneous rock erosion increased the spontaneous combustion risk of coal, igneous rock erosion could enhance the gas circulation inside the coal body, which is conducive to the oxidation reaction between oxygen and active groups inside the coal body, and the coal body of the igneous erosion had higher oxidizing activity. In addition, igneous rock erosion altered the occurrence conditions of coal seams, increased the difficulty of coal seams mining and the intensity of wind leakage in the mining airspace, prolonged the oxidation time of the residual coal in the “oxidized heating zone” in goaf, thus increasing the risk of spontaneous combustion of coal from the level of external influencing factors. The erosion of igneous rock changes the structure of coal itself and the external environmental factors of coal spontaneous combustion, which intensifies the spontaneous combustion risk of the eroded coal seam.
-
-
表 1 实验煤样的工业分析结果
Table 1 Results of industrial analysis of experimental coal samples
样本 水分/% 灰分/% 挥发分/% 固定碳/% TS-1 5.37 6.76 36.48 51.39 TS -2 2.86 11.36 27.98 57.80 XN-1 4.21 8.31 33.71 53.77 XN-2 1.64 13.48 26.31 58.57 表 2 通过N2吸附获得的煤样孔隙结构参数
Table 2 Pore structure parameters of coal samples obtained by N2 adsorption
煤样 BET比表面积/
(m2·g−1)BET平均孔
径/nm孔容/(10−3cm3·g−1) HK微孔 BJH介孔 TS-1 14.605 5.739 4.324 18.515 TS-2 4.416 7.968 1.572 13.080 XN-1 17.784 5.461 6.521 19.836 XN-2 9.060 10.471 2.821 12.782 表 3 介孔、宏观孔的比表面积及孔容分布结果
Table 3 Distribution results of specific surface area and pore volume distribution of mesoporous and macroscopic pores
样本 比表面积/(m2·g−1) 孔容/(cm3·g−1) 介孔 宏观孔 介孔 宏观孔 TS-1 22.3736 0.2814 0.0613 0.0110 TS-2 16.8754 1.0046 0.0565 0.0316 XN-1 18.3846 0.2430 0.0511 0.0074 XN-2 13.7261 0.5439 0.0449 0.0206 表 4 煤样中各主要官能团谱吸收峰面积占比
Table 4 Infrared absorption peak area proportion of main functional groups in coal
样本 芳香烃/% 含氧官能团/% 脂肪烃/% 羟基/% TS-1 0.336 14.900 0.487 84.276 TS -2 0.782 29.818 2.116 67.283 XN-1 0.709 34.791 1.466 63.034 XN-2 4.053 40.647 1.906 53.393 -
[1] QIN Y, JIN K, TIAN F, et al. Effects of ultrathin igneous sill intrusion on the petrology, pore structure and ad/desorption properties of high volatile bituminous coal: Implications for the coal and gas outburst prevention[J]. Fuel, 2022, 316: 123340. doi: 10.1016/j.fuel.2022.123340
[2] STEWART A, MASSEY M, PADGETT P L, et al. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois[J]. International Journal of Coal Geology, 2005, 63(1/2): 58−67. doi: 10.1016/j.coal.2005.02.005
[3] 闫浩,张吉雄,张强,等. 巨厚火成岩下采动覆岩应力场-裂隙场耦合演化机制[J]. 煤炭学报,2016,41(9):2173−2179. YAN Hao, ZHANG Jixiong, ZHANG Qiang, et al. Coupling evolution mechanism of mining-induced overlying strata stress field and crack field under extremely thick igneous rock[J]. Journal of China Coal Society, 2016, 41(9): 2173−2179.
[4] COSTA M, MOURA H, PINTO D, et al. Effects of magmatic fluids in coals of são Pedro da cova coalfield, Douro carboniferous basin, Portugal: insights from inorganic geochemistry[J]. Minerals, 2022, 12(2): 275. doi: 10.3390/min12020275
[5] 吴斌,孟凡彬. 岩浆岩侵入煤层的地震属性识别技术[J]. 煤田地质与勘探,2020,48(6):64−71. WU Bin, MENG Fanbin. Seismic attribute recognition technology of magmatic rock intrusive coal seam[J]. Coal Geology & Exploration, 2020, 48(6): 64−71.
[6] 王亮,郭海军,程远平,等. 岩浆岩环境煤层瓦斯异常赋存特征与动力灾害防控关键技术[J]. 煤炭学报,2022,47(3):1244−1259. WANG Liang, GUO Haijun, CHENG Yuanping, et al. Abnormal coal seam gas occurrence characteristics and the dynamic disaster control technologies in the magmatic rock intrusion area[J]. Journal of China Coal Society, 2022, 47(3): 1244−1259.
[7] MASTALERZ M, DROBNIAK A, Schimmelmann A. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin[J]. International Journal of Coal Geology, 2009, 77(3/4): 310−319.
[8] 唐辉. 火成岩侵入条件下煤体微观结构变化研究[J]. 煤矿安全,2022,53(5):46−49. TANG Hui. Study on changes of coal microstructure under the condition of igneous rock intrusion[J]. Safety in Coal Mines, 2022, 53(5): 46−49.
[9] 宁振凯,高函,赵炬. 岩浆侵入对煤自燃特性和动力学特征的影响研究[J]. 煤矿安全,2023,54(9):66−72. NING Zhenkai, GAO Han, ZHAO Ju. Study on the influence of magmatic intrusion on coal spontaneous combustion and kinetics characteristics[J]. Safety in Coal Mines, 2023, 54(9): 66−72.
[10] 王亮,杨良伟,王瑞雪,等. 岩浆岩床下伏煤层采空区煤自燃致灾机制与防治[J]. 煤炭科学技术,2019,47(1):125−131. WANG Liang, YANG Liangwei, WANG Ruixue, et al. Disaster occurred mechanism and prevention of coal spontaneous combustion in goaf of seam under magmatic rock bed[J]. Coal Science and Technology, 2019, 47(1): 125−131.
[11] 秦波涛,史全林,曲宝,等. 火成岩侵蚀煤层易自然发火特性及关键致因研究[J]. 矿业科学学报,2023,8(1):15−25. QIN Botao, SHI Quanlin, QU Bao, et al. The key causes and characteristics of spontaneous combustion of coal seams affected by igneous intrusion[J]. Journal of Mining Science and Technology, 2023, 8(1): 15−25.
[12] 毕强. 大兴矿火成岩侵入条件下煤自燃特性及防治技术研究[D]. 阜新:辽宁工程技术大学,2017. [13] SHI Q, QIN B, LINAG H, et al. Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: A case study of bituminous coal in Daxing Mine, China[J]. Fuel, 2018, 216: 181−189. doi: 10.1016/j.fuel.2017.12.012
[14] SUSILAWATI R, COLIN R W. Metamorphism of mineral matter in coal from the Bukit Asam deposit, south Sumatra, Indonesia[J]. International Journal of Coal Geology, 2006, 68(3/4): 171−195.
[15] 刘福胜,徐培武,郑荣华. 邯郸煤田岩浆侵入及对煤层煤质的影响[J]. 中国煤田地质,2007,19(5):22−24. LIU Fusheng, XU Peiwu, ZHENG Ronghua, et al. Magmatic intrusion and its impact to coal seam and coal quality in Hanxing Coalfield[J]. Coal Geology of China, 2007, 19(5): 22−24.
[16] 蒋静宇,程远平,王海峰,等. 岩浆侵入对煤吸附瓦斯特性的影响分析[J]. 采矿与安全工程学报,2012,29(1):118−123. JIANG Jingyu, CHENG Yuanping, WANG Haifeng, et al. Effect of igneous intrusion on adsorption characteristics of coal to gas[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 118−123.
[17] 代世峰,任德贻,刘建荣,等. 河北峰峰矿区煤中微量有害元素的赋存与分布[J]. 中国矿业大学学报,2003,32(4):358−362. DAI Shifeng, REN Deyi, LIU Jianrong, et al. Occurrence and distribution of minor toxic elements in coals of Fengfeng Coalfield, Heibei Province, North China[J]. Journal of China University of Mining & Technology, 2003, 32(4): 358−362.
[18] LIU J, DAI S, SONG H, et al. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China[J]. International Journal of Coal Geology, 2021, 247: 103855. doi: 10.1016/j.coal.2021.103855
[19] JIANG J , CHENG Y, WANG L, et al. Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coalfield, China[J]. International Journal of Coal Geology, 2011, 88(1) : 55-66.
[20] 张文豪,于涛. 预氧化煤二次自燃热效应及动力学分析[J]. 煤矿安全,2022,53(8):42−49. ZHANG Wenhao, YU Tao. Thermal effect and kinetic analysis of secondary spontaneous combustion of pre-oxidized coal[J]. Safety in Coal Mines, 2022, 53(8): 42−49.
[21] 谭波,胡瑞丽,李凯,等. 不同变质程度烟煤的自燃极限参数对比分析[J]. 煤炭科学技术,2013,41(5):63−67. TAN Bo, HU Ruili, LI Kai, et al. Comparison analysis on spontaneous combustion limit parameters of bituminous coal with different metamorphic degree[J]. Coal Science and Technology, 2013, 41(5): 63−67.
[22] 李宗翔,张明乾,杨志斌,等. FTIR和XRD在断层构造煤结构分析中的应用[J]. 光谱学与光谱分析,2023,43(2):657−664. LI Zongxinag, ZHANG Mingqian, YANG Zhibin, et al. Application of FTIR and XRD technology in coal structural analysis of fault tectonic[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 657−664.
[23] ZHANG X, ZOU J, LU B, et al. Experimental study on effect of mudstone on spontaneous combustion of coal[J]. Energy, 2023, 285: 128784. doi: 10.1016/j.energy.2023.128784
-
期刊类型引用(2)
1. 赵兵朝,冯杰,赵阳,侯恩科,马云祥,冯欣怡. 覆岩导水裂隙带发育高度动态演化规律研究. 煤矿安全. 2024(02): 176-183 . 本站查看
2. 王浩杰,方家虎,孙萍. 钱营孜矿F_(22)高角度正断层防水煤柱留设宽度研究. 煤矿安全. 2023(01): 188-197 . 本站查看
其他类型引用(3)