• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

松散煤体中低频声波传声频率优选实验研究

邓军, 屈高阳, 任帅京, 王彩萍, 赵小勇

邓军, 屈高阳, 任帅京, 王彩萍, 赵小勇. 松散煤体中低频声波传声频率优选实验研究[J]. 煤矿安全, 2022, 53(1): 15-23.
引用本文: 邓军, 屈高阳, 任帅京, 王彩萍, 赵小勇. 松散煤体中低频声波传声频率优选实验研究[J]. 煤矿安全, 2022, 53(1): 15-23.
DENG Jun, QU Gaoyang, REN Shuaijing, WANG Caiping, ZHAO Xiaoyong. Experimental study on optimization of low frequency acoustic transmission frequency in loose coal[J]. Safety in Coal Mines, 2022, 53(1): 15-23.
Citation: DENG Jun, QU Gaoyang, REN Shuaijing, WANG Caiping, ZHAO Xiaoyong. Experimental study on optimization of low frequency acoustic transmission frequency in loose coal[J]. Safety in Coal Mines, 2022, 53(1): 15-23.

松散煤体中低频声波传声频率优选实验研究

Experimental study on optimization of low frequency acoustic transmission frequency in loose coal

  • 摘要: 声波测温技术中信号频率的选择是提高测温准确性的关键。为探究低频声波在松散煤体中的最优传播频率,以褐煤、焦煤、无烟煤作为研究对象,运用传声损失实验测试系统,测试了3种煤样在0.9~<3、3~<5、5~<7、7~10、9~10、>10 mm 6种粒径下的传声损失。结果表明:所有煤样的传声损失随着声波频率的增大而呈现波浪式上升形状,相较于其它粒径煤样,0.9~<3 mm范围内煤样的传声损失最大;随着煤样粒径的增加,煤样传声损失不断增加,且传声损失最低点对应的声波频率也不断增大,煤样的煤化程度对传声损失的影响没有表现出明显规律性,煤样粒径是影响煤样传声损失变化的主要因素,并且声波主要是沿着松散煤体粒径间的空隙传播;通过对比分析传声损失的极大值与极小值,发现不同粒径煤样的传声损失在250~600 Hz与900~1 600 Hz之间存在极大值,其传声损失极大值范围在4.66~7.64 dB之间;通过测试3种煤样混样在低频声波中的传声损失,确定了松散煤体中最优传声频率范围为600~900 Hz。
    Abstract: The selection of signal frequency in acoustic temperature measurement technology is the key to improve the accuracy of temperature measurement. In order to explore the optimal propagation frequency of low-frequency sound waves in loose coal, lignite, coking coal, and anthracite are used as the research objects. The acoustic loss of three coal samples under six particle sizes(0.9 mm to <3 mm, 3 mm to <5 mm, 5 mm to <7 mm, 7 mm to 10 mm, 9 mm to 10 mm and larger than 10 mm) by using the acoustic loss test system is tested. The experimental results show that the sound transmission loss of three coal samples presents a wave-like rising shape with the increase of the sound wave frequency. Compared with coal samples of other particle sizes, the sound transmission loss of coal samples in the range of 0.9 mm to <3 mm is the largest. As the particle size of coal samples increases, the sound transmission loss of coal samples continues to increase, and the sound wave frequency corresponding to the lowest point of sound transmission loss also increases. The degree of coal sample deterioration has no obvious regularity in the influence of sound transmission loss. The sample size is the main factor that affects the change of the sound transmission loss of the coal sample, and the sound waves mainly propagate along the gaps between the particle sizes of the loose coal. By comparing and analyzing the maximum and minimum values of sound transmission loss, there is a maximum value between 250 Hz to 600 Hz and 900 Hz to 1 600 Hz about the sound transmission loss of coal samples of different particle sizes, and the maximum sound transmission loss range is between 4.66 dB and 7.64 dB. By testing the sound transmission loss in the low-frequency sound waves of the mixture of three coal samples, it is determined that the optimal sound transmission frequency range in the loose coal is 600 Hz to 900 Hz.
  • [1] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960.

    XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960.

    [2] 肖旸,吕慧菲,任帅京,等.咪唑类离子液体抑制煤自燃特性的研究[J].中国矿业大学学报,2019,48(1):175-181.

    XIAO Yang, LV Huifei, REN Shuaijing, et al. Inhibition properties of imidazolium-based ionic liquids on coal spontaneous combustion[J]. Journal of China University of Mining & Technology, 2019, 48(1): 175-181.

    [3] 邓军,白祖锦,肖旸,等.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125.

    DENG Jun, BAI Zujin, XIAO Yang, et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Coal mine safety, 2020, 51(10): 118-125.

    [4] 赵晓虎,孙鹏帅,杨眷,等.应用于煤自燃指标气体浓度在线监测系统[J/OL].煤炭学报:1-10.[2021-10-22].https://doi.org/10.13225/j.cnki.jccs.2020.1368.

    ZHAO Xiaohu, SUN Pengshuai, YANG Juan, et al. Applied to the online monitoring system of coal spontaneous combustion index gas concentration[J/OL]. Journal of China Coal Society: 1-10.[2021-05-31].

    [5] H Yan, G Chen, Q Yang, et al. Research on complicated temperature field reconstruction based on acoustic CT[J]. Acta Acustica, 2012, 37(4): 370-377.
    [6] 白鹤云.声波在粮食中传播时间及传播特性的测试研究[D].沈阳:沈阳工业大学,2019.
    [7] ZHANG Shiping, SHEN Guoqiang, AN Liansuo, et al. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography[J]. Applied Thermal Engineering, 2015, 75: 958-966.
    [8] HU Yonghui, GUO Miao, YAN Yong, et al. Temperature measurement of stored biomass of different types and bulk densities using acoustic techniques[J]. Fuel, 2019, 257: 115986.1-115986.9.
    [9] FENG Tian, WANG Fuli, XU Li, et al. Temperature distribution measurement using acoustic sensors in furnace[J]. Journal of Transducer Technology, 2003(2): 32-34.
    [10] 李志勇,沈国清.声学测温技术在电站锅炉中的应用研究[J].电力安全技术,2017,19(4):35-38.
    [11] JOHN A. Kleppe. High-temp gas measurement using acoustic pyrometry[J]. Sensors, 1996, 13(1): 17-23.
    [12] 贺梅英,黄沛天.声速测量实验中声波衰减现象的研究[J].物理测试,2007(1):27-28.

    HE Meiying, HUANG Peitian. Research for attenuation of sound wave in sound velocity measurements[J]. Physics Examination and Testing, 2007(1): 27-28.

    [13] Yu Peng, Yan Hua, Yao Li. Measurement of acoustic attenuation coefficient of stored grain[C]//3rd International Conference on Control, Automation and Robotics (ICCAR). IEEE, 2017.
    [14] 齐成婧,毛崎波.多分支HQ管模型的传声损失分析[J].声学技术,2020(2):224-229.

    QI Chengjing, MAO Qibo. Analysis of the acoustic transmission loss of multi-branch HQ tube structure[J]. Technical Acoustics, 2020(2): 224-229.

    [15] 周静,邱彬,倪文龙,等.声波沿钻柱最优传输特性的研究[J].振动与冲击,2015,34(18):161-165.

    ZHOU Jing, QIU Bin, NI Wenlong, et al. Optimization of acoustic communication along the drillstring[J]. Journal of Vibration and Shock, 2015, 34(18): 161-165.

    [16] 代伟嵩,周新志,白兴都,等.基于声波的快速温度场重建系统研究[J].现代电子技术,2019,42(22):1.

    DAI Weisong, ZHOU Xinzhi, BAI Xingdu, et al. Research on rapid temperature field reconstruction system based on sound waves[J]. Modern Electronics Technique, 2019, 42(22): 1.

    [17] 王翌伟,徐晓美,林萍,等.薄膜型声学超材料隔声特性研究[J].噪声与振动控制,2021,41(6):42-48.

    WANG Yiwei, XU Xiaomei, LIN Ping, et al. Sound insulation properties of membrane-type acoustic metamaterials[J]. Noise and Vibration Control, 2021, 41(6): 42-48.

    [18] 姜根山,许伟龙,孔倩,等.强声波在电站锅炉中传播特性的研究[J].动力工程学报,2016,36(9):683.

    JIANG Genshan, XU Weilong, KONG Qian, et al. Propagation characteristics of high-intensity sound in power plant boilers[J]. Journal of Chinese Society of Power Engineering, 2016, 36(9): 683-689.

    [19] 王然,安连锁,沈国清,等.基于奇异值分解的炉膛三维温度场声学重建仿真研究[J].中国电机工程学报,2014,34(S1):147-152.

    WANG Ran, AN Liansuo, SHEN Guoqing, et al. Research on simulation of furnace three-dimensional temperature field reconstruction by acoustics based on singular value decomposition[J]. Proceedings of The Chinese Society for Electrical Engineering, 2014, 34(S1):147-152.

    [20] 安连锁,王然,沈国清,等.声学法重建炉内三维温度场的算法概述[J].电站系统工程,2014,30(5):9.

    AN Liansuo, WANG Ran, SHEN Guoqing, et al. Over-view of furnace three-dimensional temperature field reconstruction algorithms based on acoustic theory[J]. Power System Engineering, 2014, 30(5): 9-12.

    [21] 张虎,李世伟,陈应航,等.非接触高温测量技术发展与现状[J].宇航计测技术,2012,32(5):68-71.

    ZHANG Hu, LI Shiwei, CHEN Yinghang, et al. The present situation on non-contact high temperature measurement technology[J]. Journal of Astronautic Metrology and Measurement, 2012, 32(5): 68-71.

    [22] 马玺越,陈克安,丁少虎,等.双层加筋板低频声的隔离与有源控制[J].声学学报,2014,39(4):479-488.

    MA Xiyue, CHEN Kean, DING Shaohu, et al. Passive and active low frequency sound insulation effects of rib stiffened double-panel structure[J]. Acta Acoustica, 2014, 39(4): 479-488.

    [23] Mantsevich S, Kostyleva E. Shear acoustic wave attenuation influence on acousto-optic diffraction in tellurium dioxide crystal[J]. Applied Optics, 2020, 59(22): 6796-6802.
    [24] Luo H, Giordano V, Gravouil A, et al. Continuum constitutive laws to describe acoustic attenuation in glasses[J]. PHYSICAL REVIEW E, 2020, 102(3): 033003.
    [25] 杨训仁.声波和由电子粘滞性和声子粘滞性所引起的位错阻尼[J].声学学报,1966(1):61-63.
    [26] 袁健,贺才春,林胜.阻抗管中的隔声量测试方法[J].噪声与振动控制,2006,26(4):108-110.

    YUAN Jian, HE Caichun, LIN Sheng. A method for determining acoustics transmission loss in impedance tubes[J]. Noise and Vibration Control, 2006, 26(4): 108-110.

    [27] 李明俊,石春华.微纳铁尾矿砂吸隔声板的制备及其影响因素分析[J].安全与环境学报,2021,21(2):787-793.

    LI Mingjun, SHI Chunhua. Preparation and influencing factors analysis of micro-nano iron tailing sand board for sound absorption and insulation[J]. Journal of Safety and Environment, 2021, 21(2): 787-793.

    [28] 蔡峰,袁媛,刘泽功,等.超声波在煤矿井下环境中的传播与衰减特性[J].中国矿业大学学报,2021,50(4):685-690.

    CAI Feng, YUAN Yuan, LIU Zegong, et al. Propagation and attenuation characteristics of ultrasonic in underground environment of coal mine[J]. Journal of China University of Mining & Technology, 2021, 50(4): 685-690.

    [29] 杨帆,李丽君.亥姆霍兹共振腔不同连接方式的传递损失与特性分析[J].现代制造工程,2018(5):31.

    YANG Fang, LI Lijun. Transmission loss and characteristic analysis of double Helmholtz resonators with different connection modes[J]. Modern Manufacturing Engineering, 2018(5): 31.

    [30] 郭敏.声信号在准多孔介质中的传播及害虫弱声信号特征分析[D].西安:陕西师范大学,2003.
    [31] 王明杰,张卫红,陈雅曦,等.考虑声波多次反射的阻抗管隔声量仿真研究[J].噪声与振动控制,2020,40(3):260-264.

    WANG Mingjie, ZHANG Weihong, CHEN Yaxi, et al. Research on simulation of sound insulation of imped-ance tubes considering multiple wave reflection[J]. Noise and Vibration Control, 2020, 40(3): 260-264.

    [32] GB/Z 27764—2011声学 阻抗管中传声损失的测量 传递矩阵法[S].
    [33] ROBERT Hickling, WEI Wei, DAVID W. Hagstrum. Study of sound transmission in various types of stored grain for acoustic detection of insects[J]. Applied Aco-ustics, 1995, 50(4): 263-278.
  • 期刊类型引用(7)

    1. 赵禹深,许献磊,曹仕龙,朱鹏桥. 地下煤火探测技术及工程应用综述. 矿业科学学报. 2025(01): 24-39 . 百度学术
    2. 邓军,王津睿,任帅京,王彩萍,屈高阳,马砺. 采空区煤自燃高温点识别与探测技术研究与展望. 煤炭学报. 2024(02): 885-901 . 百度学术
    3. 郭军,高文静,蔡国斌,刘荫,王凯旋. 基于伪随机序列的松散煤体声学测温方法及应用. 煤炭科学技术. 2024(06): 123-131 . 百度学术
    4. 谢秀敏,张雷林. 不同粒径焦煤高温燃烧特性参数研究. 煤矿安全. 2024(08): 80-87 . 本站查看
    5. 郭军,陈昌明,金永飞,蔡国斌,文虎,李帅. 松散煤体准多孔介质声速煤-温映射关系模型. 煤炭学报. 2024(08): 3510-3521 . 百度学术
    6. 张铎,王帅豪,文虎,邓军,翟小伟,王伟峰. 采空区遗煤自燃隐蔽火源位置探查现状及新技术展望. 煤矿安全. 2024(11): 108-119 . 本站查看
    7. 邓军,王津睿,任帅京,何骞,王彩萍,屈高阳. 声波探测技术在矿井领域中的应用及展望. 煤田地质与勘探. 2023(06): 149-162 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  64
  • HTML全文浏览量:  0
  • PDF下载量:  40
  • 被引次数: 7
出版历程
  • 发布日期:  2022-01-19

目录

    /

    返回文章
    返回